
IC470, Software Engineering

Exam: In class as per the syllabus

 As per the course policy, only non-programmable calculators may be used on the exam

 The exam will primarily cover chapters 7, 14, and 15 of the Schach text, but necessarily

builds on the material covered in the milestones as well as in the first six weeks of the course

 The following exam objectives are intended to aid you in your preparations for the course's

examinations However, the following are not considered to be inclusive of all the testable

material from this course All assigned reading material, supplemental handouts, class

lectures, class discussions, homework, labs, programming projects, team assignments, and in-

class problem-solving sessions are considered testable material

================= 12 Week Exam Objectives =================

Project Planning

 Be able to read a Gantt chart

 Understand the project planning information communicated by a Gantt chart

 Describe the use of a Gantt chart as a project planning tool, both for planning and for monitoring

actual progress during project development

 Be able to construct a Gantt chart given estimates of the time required to complete the various tasks

of a project and the software development method being used

 Understand the impact on project planning and Gantt chart construction of various software lifecycles

such as Waterfall, Spiral Model, and Agile

Object Oriented Design (OOD)

 Understand the role of scenarios within OOD

 Describe the role of messages exchanged between class instances on UML sequence diagrams

 Be able to use the UML sequence diagram notation as part of the OOD of a software requirement

 Be able to evaluate the correctness of a UML sequence diagram

 Be able to use the UML detailed class diagram notation as part of the OOD of a software requirement

 Be able to evaluate the correctness of a UML detailed class diagram

 Apply the steps of OOD as presented by the author to include UML sequence diagrams, detailed class

diagrams to include methods as class members that appeared on the sequence diagrams, detailed

design - pseudo-code

 Understand metrics available during OOD

Cohesion and Coupling

 Define a module in terms of both structured and object-oriented programming

 Describe cohesion

 Understand the levels of cohesion

 Characterize the cohesiveness of a module

 Describe coupling

 Understand the levels of coupling

 Characterize the coupling between modules

 Understand the impact of object-oriented inheritance on coupling and cohesion

 Understand software reuse regarding modules

Dynamic Testing

 Understand why the number of all possible test cases rapidly becomes unmanageable/impossible

when testing to specifications (black box) and testing to code (glass box)

 Apply equivalence class techniques for reducing the number of test cases

 Use boundary value analysis (edge cases) in test data set construction

 Be able to develop black box test cases that focus on testing the specification of a module

 Be able to develop glass box test cases that focus on statement, branch, or path coverage of given

source code

 Be able to determine the number of test cases needed for complete path, branch or statement coverage

of given source code.

 Apply McCabe's cyclomatic complexity metric to determine the complexity value (M) of given

source code

 Understand the relationship between McCabe's Metric and the test cases needed to ensure branch

coverage of a module

 Determine whether a module should be redesigned based upon its McCabe’s Metric (M) value

ACM/IEEE Software Engineering Code of Ethics ("Software Engineering Code of Ethics is

Approved" Communications of the ACM, October 1999/Vol 42, No. 10, pp 102-107.

 Understand the principles of the Software Engineering Code of Ethics

 Apply one or more principles of the Software Engineering Code of Ethics to a given scenario in

which one or more principles are potentially violated. Be able to identify the specific principle(s) and

explain why the principles were violated

 Comprehend why the Software Engineering Code of Ethics was developed

SE_Code_Of_Ethics.pdf
SE_Code_Of_Ethics.pdf

