

Easily Satisfied

Dr. Christopher Brown
wcbrown@usna.edu

CS Department Faculty (Professor)

Team Number 8, Easily Satisfied

Oriole, A.J. (CS),
Cimmiron, Caleb (CS),

Bourne, Jason (CS/IT (dual major)),
McCloud, Ian (IT) (Team Leader)

Customer’s initials: __________ Date initialed: __________ “I have reviewed the
Teams Capstone Proposal and am satisfied with its contents including, in particular, the
team’s Acceptance-Testing-Focused Functional Requirements Trace Table. I
understand that the team will be following the Agile Software Development approach
and that I may (and am encouraged to) ask for the addition, removal, or modification of
any functional or non-functional requirements and/or acceptance test cases at any time
as the Capstone Project progresses.”

mailto:wcbrown@usna.edu

1

Table of Contents
Abstract ………………………………………………………………………………………… 2

Motivation ……………………………………………………………………………………… 2

High Level View ………………………………………………………………………….…… 2

Glossary…………………...…………………………………………………………………… 3

Justification ………………………………………………………………………………….… 3

Customer’s Current Process ……………………………………………………………...… 4

Topical Areas ………………………………………………………………………….….….. 4

Existing/To Be Built Software………………………………………….….…………………. 4

Required Resources …………………………………………………….……….….………. 5

Functional Requirements Trace Table……………….……….….…………..…….........…. 5

Design (of most complex part of project) …….…………………………………………….. 7

Risk Management…………………………..……….……………………..….…………….... 9

Project Plan & Gantt Chart ……………….…………………………………………….... 11

Quality Assurance ……………….…………………….…….….…………..………….....…. 11

Customer Acknowledgment ……………….…….….…………..…………....……….…… 12

2

Abstract

Satisfiability Modulo Theory (SMT) solvers are tools which solve problems expressed in first-

order logic. We propose creating a theory solver, a component of SMT solvers, which can

perform fast simplifications and satisfiability determinations in the theory of real non-linear

constraints. A challenge will be in adapting algorithms that were not designed for the

architecture of modern SMT solvers, implementing them, and then incorporating them into

existing SMT solvers.

Motivation

Our project is intended to provide Dr. Brown the functionality of a Satisfiability Modulo Theory

(SMT) solver, and to aid in his research pertaining to nonlinear polynomial constraint (NPQ)

problems. We take an NPQ problem, which will be given in the format of the SMT-LIB language

commonly used in this field of research, and generate an equivalent conjunctive normal form

(CNF) boolean logic expression that can be solved by a conventional SAT solver program. The

boolean literals of the CNF expression will be mapped to the polynomial inequalities which they

represent. These polynomials and the boolean values assigned to them by the SAT solver will

be used as input to Dr. Brown’s theory solver to receive a satisfying assignment to all variables

of the problem. We find this project interesting since it will allow us to deeply explore the

SMT_LIB language, create novel algorithms for large data structures, and generate SAT

assignments, all of which go far beyond our algorithms and theory of computing coursework.

Overview

A high-level view of our project is given in Figure 1. As shown in Figure 1, all communications

between the software we create and the software Dr. Brown uses will adhere to the application

programming interface (API) that we will develop in coordination with Dr. Brown. Specifically, we

will scan and parse SMT-LIB input into a usable parse tree; we will register the polynomial

constraint inequalities with Dr. Brown’s software to reduce, simplify, and condense those

inequalities; we will convert these simplified inequalities into an expression of boolean literals.

We will generate CNF expressions from those boolean literals that can be passed to the SAT

solver program MiniSat, which we hope to later modify to reduce time-costs by implementing a

programmable heuristic algorithm which can streamline the SAT-solving process in the context

of the NPQ Problem. Finally, we will pass an assignment set of literals along with the

inequalities that they represent to be solved by the theory solver. We will have a driver program,

or “mediator,” that uses the APIs of the MiniSat program and Dr. Brown’s Theory Solver

software as well as the parser and transformers that we develop to eventually provide either an

assignment of variables to satisfy the NPQ problem posed by the user, or confirm that the

problem is inherently unsatisfiable.

3

Figure 1: High Level Diagram of the SAT Solver Project

Glossary

 Satisfiability (SAT): A formula is satisfiable if it is possible to find an interpretation

(model) that makes the formula true.

 Self-reducible: Each algorithm which correctly answers whether an instance of SAT is

solvable can be used to find a satisfying assignment is considered self-reducible.

 Mini-SAT: A minimalistic, open-source SAT solver that we will modify to perform the

SAT solving.

Justification

This project is a good candidate for a capstone project because it will prompt us to use our

cursory knowledge from theory and algorithms to solve a much more complex and systematic

software need. Each member will be delving into unfamiliar academic material and apply their

coding experience to a vastly different kind of program. This project actively assists Dr. Brown

and his research on real non-linear polynomial constraint problems and also has the ability to be

scoped to a broader set of applications. Table A gives a discussion of the existing software that

we will use, and also the software that we will develop from scratch.

4

Customer’s Current Process

The Customer currently has no SMT solver for SMT-LIB problems in the QF_NRA logic.

Topical Areas

We have identified 4 major tasks:

1) Parsing in SMT-LIB and propositional logic - language processing

2) “Hacking” MiniSat to use modular heuristics - reverse engineering

3) Co-creating an API for Dr. Brown’s SW - API development

4) Create a driver to mediate our solvers - inter-application comm.

We will be building heavily on course knowledge from Theory, Algorithms, and Artificial

Intelligence

Existing / To Be Built Software

Table A discusses the existing software we will use, and the software that the team intends to

develop as part of the project.

Table A. Existing Software to be Used and Significant Software to be Developed

Pre-existing software the capstone team intends to use
with little or no modification

Software the capstone team
intends to develop on its own,

or significantly modify

MiniSat - MiniSat is a minimalistic, open-source SAT solver that
we will use to perform the SAT solving. We will utilize the API to
find assignments for our CNF-formatted expressions of boolean
literals. We will make small modifications to the solver to be
open it up to heuristic modifications that benefit the theory
solver.

SMT-LIB parser - A parser to take
input in SMT-LIB format and parse
it into its component parts and
store it in a data structure.
Developed from scratch

QF_NRA Theory Solver - The customer’s existing algorithm to
solve problems in the set of real, non-linear, polynomial
constraint problems.

CNF-Transformer - A program that
can produce a CNF-formatted
expression of boolean literals from
the data structure. This
transformer communicates with
the theory solver to produce the
simplest possible CNF-expression.
Developed from scratch.

5

Required Resources

 The C++ Programming Language 4th edition

 Academic sources on SMT, SAT, Driver Programming

 SMT-LIB website for documentation (http://smtlib.cs.uiowa.edu/)

 Dr. Brown’s Theory Solver software

 MiniSat software (open-source)

 Human resources provided by Dr. Brown’s colleagues.

Functional Requirements Trace Table

Table B gives the Functional Requirements for the project, as well as the Acceptance Test

Cases that will be used to demonstrate that the indicated Functional Requirements have been

met by our system. The primary developer as well as a secondary developer has been indicated

for each functional requirement. The build number corresponds to the order in which we intend

to develop the various subsets of the project. We also include all necessary preliminary steps,

such as 6 - Learn MiniSat API, as Functional Requirements.

Table B. Acceptance-Testing Focused Functional Requirements Trace Table

Functional Requirement Acceptance Test Plan Build #

1. Parse SMT-LIB: Read in an

SMT-LIB problem and be able to
parse it into a readable, infix
notation expression. Give
proper errors for bad problems.

Primary: MIDN Cimmiron

Secondary: MIDN McCloud

1.1. A problem is given, but is not in proper SMT-LIB
format.
Expected result -> The parser returns an
appropriate error message. (Abnormal)

1.2. A problem pertaining to a logic other than
QF_NRA is given in SMT-LIB format.
Expected result -> The parser returns an
appropriate error message. (Abnormal)

1.3. A properly formatted problem in the QF_NRA
logic is presented.
Expected result -> The problem is parsed and
printed as a readable, infix notation expression.
(Normal)

1

2. Theory Solver API: Formally

define an API that enumerates
the functions that can be called
on the theory solver. Create
documentation that is approved
by both parties.

Primary: MIDN McCloud

Secondary: MIDN Oriole

2.1. The customer and the developer formally review
the documentation.
Expected result -> The API is deemed satisfactory.
(Normal)

1

6

3. Expression Simplification:
Register inequalities with the
theory solver to replace complex
expressions with inequalities of
a single variable and 0.

Primary: MIDN Oriole

Secondary: MIDN Bourne

3.1. A set of complex inequalities is given. Expected
result -> The set is printed in simplified form.
(Normal)

3.2 A set in simplified form is compared to the set
that it was derived from.
Expected result -> The sets are found to be
equivalent. (Normal)

3

4. Boolean Transformation:
Represent a set of single
variable inequalities as an
expression of boolean literals.
Create a map from these
boolean literals to the
inequalities that they represent.
Recognize the relationship
between different inequalities on
the same variable to refrain from
adding unnecessary literals.

Primary: MIDN Bourne

Secondary: MIDN Cimmiron

4.1. A set of unique single variable inequalities is
given.
Expected result -> Represent them as boolean
literals and create an expression of these literals.
(Normal)

4.2. An expression of boolean literals derived from a
set of inequalities is converted back to a set of
inequalities. This set is compared to the original set
of inequalities.
Expected result -> The two sets of inequalities are
found to be equivalent. (Normal)

4.3. Two inequalities are given with the same
variable.
Expected result -> One boolean literal is created to
represent both inequalities. (Abnormal)

2

5. CNF Transformation:
Transform an expression of
boolean literals to CNF-format
utilizing Tseitin- Transformation.

Primary: MIDN McCloud

Secondary: MIDN Bourne

5.1. An expression of boolean literals not in CNF-
format is given.
Expected result -> The expression is transformed
to CNF-format. (Normal)

5.2. A transformed expression is compared to the
expression that it was derived from.
Expected result -> The expression is shown to be
equivalent to the original expression. (Normal)

2

6. Learn MiniSat API

Primary: MIDN McCloud

Secondary: MIDN Oriole

Note: This is a necessary
preliminary step

6.1. A CNF-format satisfiable problem is given to be
solved through the MiniSat API.
Expected result -> A solution is received from the
MiniSat solver through the MiniSat API. (Normal)

6.2. A user requests to receive all solutions to a
CNF-format satisfiable problem.
Expected result -> All solutions from the MiniSat
solver are iterated through via the API and output to
the user. (Normal)

6.3. A CNF-format unsatisfiable problem is given to

1

7

be solved through the MiniSat API.
Expected result -> The user is alerted that there is
no solution to the problem. (Normal)

7. Theory Solver: Be able to

pass the theory solver an
expression and receive a
solution or a reason for failure.

Primary: MIDN Bourne

Secondary: MIDN Cimmiron

7.1. An expression is passed to the theory solver
that is satisfiable in the theory.
Expected result -> Receive a satisfying assignment
to the problem. (Normal)

7.2. An expression is passed to the theory solver
that is not satisfiable in the theory.
Expected result -> Receive an explanation of failure
that formulates a learned clause. (Normal)

4

8. SMT-LIB Conversion: Be

able to convert a CNF-formatted
expression to SMT-LIB

Primary: MIDN Cimmiron

Secondary: MIDN Bourne

8.1. A CNF-format expression is given.
Expected result -> The expression is converted to
an SMT-LIB statement. (Normal)

8.2. An SMT-LIB statement is converted back to a
CNF-format expression and compared to the
expression that it was derived from.
Expected result -> The two expressions are
equivalent. (Normal)

3

9. Heuristic Modification:
Modify MiniSat to allow for
heuristic manipulation.

Primary: MIDN Oriole

Secondary: MIDN McCloud

9.1. A modified set of heuristics for MiniSat is given.
Expected result -> The heuristics are plugged into
the MiniSat solver. (Normal)

9.2. The solver is run on a problem to receive a
solution with the new heuristics.
Expected result -> The result is in keeping with the
heuristics expected outcome. (Normal)

4

Design (of the most complex part of the project)

The most complex part of our project is Functional Requirement 7: Theory Solver, as it requires

a determination of whether a SAT solution exists for any properly formed expression passed to

it. Our MiniSAT Solver Solution Algorithm fulfills this functional requirement. Figure 2a gives the

overall design for the Selection and Analysis subsystem, while Figure 2b gives the specific

design of our MiniSAT Solver Solution Algorithm. A detailed description of our design is as

follows:

1. As shown in Figure 2a, the input to our system comes from our Model Selector data

source which allows the user to select from either predefined or user-defined models,

8

2. Once a model had been selected and provided as input, MiniSAT Formulas Creator

process generates a formula for an SMT instance which is then sent to our MiniSAT

Solver process.

3. The resulting SMT solution (including the empty case if no solution is found) is sent to

our MiniSAT Solution Analyzer process to determine the state and satisfiability of the

solution.

4. These results are sent to our Strategy Supervisor process which determines whether the

target state has been reached, and if not, the number of steps remaining. Our data store

a dictionary of standard model variable values that may be looked up as needed by the

Strategy Supervisor.

a. If the Strategy Supervisor determines that additional refinements to the solution

are possible, the steps for refinements and the current target state are sent to the

SMT Formulas process which continues the analysis as described above.

b. Otherwise, the Strategy Supervisor displays the current results.

Figure 2a. Design of SMT Selection and Analysis subsystem using a dataflow diagram

As shown in Figure 2.b, the design of our MiniSAT Solution Analyzer algorithm includes the

following steps:

1. Perform a depth-first search through the space of possible variable assignments. Stop

when a satisfying assignment is found or all possibilities have been tried. Optimization

choices include:

a. Skip branches where no satisfying assignments can occur.

b. Order the search to maximize the amount of the search space that can be

skipped.

2. Repeat the following steps until SAT or UNSAT is returned:

a. Decide: Select some unassigned variable and assign it a value.

i. If all variables are assigned, return SAT.

9

b. Deduce: Infer values of other variables that follow from that assignment and

detect conflicts.

c. Resolve: In case of conflict, record a new clause prohibiting that conflict; undo

the assignments leading to the conflict.

i. If it’s a top-level conflict (the conflict clause is empty), return UNSAT.

Figure 2b. Design of our MiniSAT Solution Analyzer algorithm using a flowchart

Risk Management

In Table C, we consider all of the risks that we anticipate in the development of the project,

identify a risk management technique for resolving each risk, and give the current status of the

team in mitigating each risk.

Table C: Risk Management

Priority

Risk

Risk Management
Technique

Status

1

Probability:
Medium

Scanner and parser do
not handle certain inputs
correctly due to wide

Continual testing on
inputs throughout
development

All team members in
Programming Languages
are learning Flex and
Bison in their

10

Severity:
High

range of SMT-LIB data
types

Programming Languages
class

3

Probability:
Low

Severity:
High

Scanner and parser pass
up bad input causing
errors further along
program execution that
are hard to trace back to
an apparently working
scanner/parser

Careful analysis of
errors and never
assuming scanner and
parser are 100% correct

Scanner and Parser going
through re-development
since Milestone 2

8

Probability:
Low

Severity:
Medium

Compressor of map has
a bottleneck in time
because of inefficiency

Algorithm analysis to
help determine time
cost

Early Stages: Searching
for best c++ map library
for our use

4
Probability:

Low

Severity:
High

Map that Dr. Brown’s
Program has and our
program are not in sync

Make one copy of the
map at the beginning
that persists through our
process, and is stored in
Dr. Brown’s Software.

Consulting Dr. Brown of
our plan for the map, and
when we process those
expressions

7
Probability:

Low
Severity:
Medium

CNF translation takes
exponential time

Algorithm analysis to
determine time cost

Functional requirement
lead for this step
responsible

5

Probability:
Low

Severity:
High

CNF translation is
translated with
exponential space

Algorithm analysis to
determine space cost

Functional requirement
lead for this step
responsible

2

Probability:
Medium

Severity:
High

Mediator and API
between programs cause
errors on certain inputs
not accounted for and go
unnoticed

Create an API that
always catches errors
and informs user as
opposed to catching
errors and moving on

Functional requirement
lead for this step
responsible

6
Probability:

Medium

Severity:
Medium

MiniSat spends too much
time waiting on mediator
and not doing work.

Test MiniSat or find out
through MiniSat
research how much
CNF data it can handle
at a time

Currently everyone is
researching MiniSat

11

Project Plan & Gantt Chart

Figure 3 presents the project plan timeline as a Gantt Chart. As shown in Figure 3, before the

group begins development on this project, everyone will need to research the particulars of

some of the components involved. Specifically, the group will look into the nuances of the SMT-

LIB language to effectively construct SMT processing software that will parses the user input, as

well as the MiniSat program which will be modified to allow for users to define a set of heuristic

specifications. By early to mid-December, this research should be sufficiently complete and the

group will move into the development phase of the major components of this project. The SMT-

processing and CNF generation can begin after researching SMT-LIB. Similarly, both the API to

communicate with Dr. Brown’s code as well as the software handling mediation between the

MiniSat program and the theory solver can begin once the group has figured their way around

MiniSat. These developments are expected to take the most significant amount of time and will

be tested and debugged along the way. It is expected that the development phase will end

around mid-February, and then the group will begin the combination of these separate functions

over the next few weeks before Spring Break in March. From March to mid-April the group will

continue to debug any outlying issues, and prepare the capstone presentation in earnest to be

prepared for final delivery during the last weeks of the second semester. This plan is

demonstrated with a more time oriented design as shown in Figure 3.

Figure 3: Project Plan Timeline as a Gantt Chart

Quality Assurance

MIDN Oriole served as the quality assurance team member and reviewed all parts of the

document. MIDN McCloud reviewed the portions of the document developed by MIDN Oriole.

12

Customer Acknowledgement

By signing below, the customer acknowledges that the project developed as part of this

capstone coursework becomes the property of the DoD, and that the CS Department does not

assume any responsibility for maintaining the software produced for the client. The client may

use the software within the context of their USNA affiliation, and may not distribute it without

approval from the USNA legal office.

Capstone Team Leader Name__

Capstone Project Title ___

Customer Name (printed) ___

Customer Contact Info (email/phone) ___

Customer Affiliation ___

Customer Signature __

Date___________________

