IC470, Software Engineering
Six Week Problem Set

Due date: At the start of class as per the syllabus

Collaboration: You may collaborate on this problem set as a homework with other
midshipmen currently enrolled in this course. If you do collaborate, you must turn in
only a SINGLE solution with the names of all the midshipmen that collaborated on the
solution in the top right corner. The graded work will be handed back in the same section
that it was submitted. If your name appears on more than one solution, you will receive
the lowest score of the work on which your name appears.

Note: For questions requiring a calculation, show your work to receive possible partial
credit if you make a simple math error but otherwise set the problem up correctly. Itis
fine to use a calculator to assist with calculations, but still show your work. Remember
that only non-programmable calculators may be used on the exams in this course, so
obtain one prior to the 6 week exam if you want to have one available during the exam.

Some potentially useful figures from the text are provided at the bottom of this file.

Scope of Software Engineering.

1.1. (4 pts) You are in charge of software development for the Joint Fire Control
System (JFCS), with a development budget of $370,000. Assume that your development
budget does not include post-delivery maintenance costs. Using the most recent historical
data available in the text, indicate how much money should be allocated to each phase of
the JFCS development lifecycle. Base your answer on the most recent historical data
available in the text.

1.2. (4 pts) Assuming the system in question 1.1 is built on time and within budget,
and using the approximate average costs discussed in the text, how much do you expect
future maintenance to cost?

1.3. (4 pts) Fifteen months after delivery a fault is detected in the system from
question 1.1. The cost of fixing the fault is $14,594. The fault was traced to an
ambiguous sentence in the specification document. Basing your answer on the most
recent historical data available in the text, approximately how much would it have cost to
have corrected the fault during the specification/analysis phase?

1.4. (4 pts) Approximately how much would it have cost to have corrected the fault
described in 1.3 if it had been identified during the implementation phase vice the
specification/analysis phase?

Software Life-Cycle Models.

2.1 (4 pts) What type of system is the Spiral life-cycle model best suited for? Why?

2.2 (4 pts) What is the primary measure of progress using Agile Software
Development?

2.3 (4 pts) What similarities (if any) are there between Agile Software Development
and the Waterfall Model?

2.4 (4 pts) What differences (if any) are there between Agile Software Development
and the Waterfall Model?

2.5 Functional Requirements. Identify each of the following Acceptance Test Plan
test cases as Normal, Abnormal, or Not Useful (see Lab 1). Explain your
answers.

Functional Requirement

Acceptance Test Plan test cases
(scenarios showing that the Functional
Requirement has been met, includes both normal
and abnormal uses of the system).

Circle one per row to identify each Acceptance Test Plan
test case on the left as Normal, Abnormal, or Not Useful.

In each case, explain why.

1.0 Dice roll input. The game
must allow the user to simulate
randomly rolling two standard
six-sided die. The consecutive
sums produced from the dice
rolls must agree with established
frequency distributions.

1. User rolls two dice.
Expected result -> Get a resulting sum in the
range of 2..12.

2. User rolls two dice.
Expected result -> Get a resulting sum outside
the range of 2..12.

3. User rolls two dice 10,000 times.
Expected result -> The resulting sums agree
with established frequency distributions.

4. User does not roll any dice for 10 minutes.
Expected result -> No gaming action occurs.

5. User attempts to roll only one die.
Expected result -> Unable to roll only one die
since dice are rolled together (consecutively).

1. (2 pts) (circle one) Normal, Abnormal, Not Useful
Explain why:

2. (2 pts) (circle one) Normal, Abnormal, Not Useful
Explain why:

3. (2 pts) (circle one) Normal, Abnormal, Not Useful
Explain why:

4. (2 pts) (circle one) Normal, Abnormal, Not Useful
Explain why:

5. (2 pts) (circle one) Normal, Abnormal, Not Useful
Explain why:

Object-Oriented Analysis

131

13.2

13.3

13.4

135

13.6

Consider the below ATM system description (from howstuffworks.com), and
answer the following questions. Note: For questions 13.1. .. 13.5 ignore for now
the last paragraph that starts with “Besides the electric eye ...”

(10 pts) Give a UML Use Case Diagram for the entire ATM system described
below. Be sure to show all actors and their uses of the system.

(10 pts) Produce Stage 111 of the Noun Extraction technique for the ATM system
description below in a 3-column table. In the first column, list the initial set of
results of the noun extraction (i.e. list all the nouns). Draw a line through
(strikethrough) all nouns in the first column that are outside the problem
boundary. For all remaining nouns, either list the abstract nouns in the second
column or identify them as candidate classes in the third column. The candidate
classes in the third column must be used in your initial UML Class Diagram in
13.3 below.

(10 pts) Give a UML Class Diagram for the entire ATM system. Your class
diagram must make at least one appropriate use EACH of inheritance (is-a),
aggregation (has-a), and an association. Include all abstract nouns culled from
the noun extraction above as attributes where appropriate in your UML class
diagram. Note that since this is OOA, no methods appear on the UML Class
Diagram (they will, however, appear on the UML Detailed Class Diagram
described as part of the eventual Object Oriented Design — a subject of a later
chapter).

(8 pts) Give a one paragraph discussion of how your UML class diagram would
need to change if your client wanted you to add a database that stored the
account number entered, pin number entered, photograph of user, and time of all
invalid pin entry attempts.

(10 pts) Using a different color, etc, to clearly differentiate any additions, modify
your UML Class diagram from 3 above to accommodate your client’s requests
regarding invalid pin entry attempts. Your modified UML Class Diagram must
promote reuse by abstracting the database, the information stored in the
database, and the system from each other.

(20 pts) Non-UML modeling. Give a data flow diagram that models the
information flow and processes, etc, described in just the last paragraph of the
ATM system description, the one that starts with “Besides the electric eye ...”
Use labeled ovals to model processes, labeled rectangles to model data
sources/sinks, labeled parallel lines to model data stores and labeled arrows to
model the flow of data.

n ATM is simply a data terminal with
Arwo input and three output devices. A

normal data terminal has some sort of
keyboard for input, some sort of screen for
output, and a network connection that lets it
talk to a server somewhere on the network.
An ATM adds a card reader as an input
device, along with a printer and an amazing
money dispenser as output devices, to create
a complete package.

Settlement Funds

Let’s say you want to ger some money from
an ATM at a convenience store. Chances are
that the merchant who owns the store either
owns or rents the ATM. So the merchant
fills the ATM with cash each day, and it is
the merchant’s cash that you receive when
you get money from the ATM.

You walk up to the ATM, insert your
card, and type your password. The card
tells the machine your bank and
account information. The ATM
forwards this information to the
host processor, which routes

the transaction request to

your bank.
If you're requesting cash,
the host processor causes an
electronic funds transfer to
take place from your checking
account to the host processor’s
account. Once the funds are
transferred to the host processor’s

bank account, the processor sends an
approval code to the ATM authorizing the
machine to dispense the cash. The host
processor then sends your funds into the
merchant’s bank account by automated
clearing house, usually the next bank
business day. So when you request cash,
the money moves electronically from

your account to the host’s account to the
merchant’s account, and you get the mer-
chant’s cash.

Now you know what the virtual process
is, but what'’s actually going on inside the
machine?

Parts of the Machine

An ATM has two input devices, the card
reader and the keypad. The card reader cap-
tures the account information stored on the
magnetic stripe on the back of an ATM
card. The keypad lets the cardholder tell the
bank what kind of transaction is required
(cash withdrawal, balance inquiry, or what-
ever) and for what amount. Also, the bank
requires the cardholder’s personal identifica-
tion number (PIN) for verification.

The most important output device is the
heart of an ATM—the safe and cash-dispensing
mechanism. The entire bottom portion of
most small ATMs is a safe that contains the
cash. The cash s stored in a series of cassettes—
a big ATM in a high-traffic area can hold up
to $100,000. The bill count and all of the
information pertaining to a particular trans-
action is recorded in a journal. The journal
information is printed out periodically and
the machine owner maintains a hard copy
for two years.

Besides the electric eye that counts each bill,
the cash-dispensing mechanism also has a
sensor that evaluates the thickness of each
bill. If two bills are stuck together, then
instead of being dispensed to the cardholder
they are diverted to a reject bin. The same
thing happens with a bill that is excessively
worn or torn, or is folded. So, while it’s

not likely you’re going to get an extra
20-dollar bill with your next withdrawal,
you'll be happy to know you won’t get
half of a bill either.

Figures from the text that you may find helpful.

Development
25%

Postdelivery
maintenance
75%

1992-
1998

Figure 1.3b
Various Projects 132 More Recent
between 1976 and 1981 Hewlett-Packard Projects

Requirements and analysis 21% 18%

(specification) phases
Design phase 18 19
Implementation phase

Coding (including unit testing) 36 34

Integration 24 29

Figure 1.4

400 -

Projects between 1974 and 1980 368
— — — |BM AS/400 [Kan et al.,1994] P e e g

350+

300

[\]

17,

o
1

200

=t

(&

o
I

-—

o

o
T

Approximate relative cost to detect
and correct a fault
)
=
o
1

W
<
1

1 3 -

T I I
Requirements Analysis Design Implementation Postdelivery
(specification) maintenance

Figure 1.6

