
IC470, Software Engineering 

Lab 6: Release Burndown Charts for tracking progress of Agile projects, and ScrumMaster Plan 

for the next sprint 

Due: As per the course syllabus 

 

Lab Focus: Building and evaluating a burndown chart. Developing a sprint plan for the next 

milestone delivery 

 

Lab group: If there are other mids in this section from your capstone team, work together as a 

lab group. If not, pair up with other free mids from this section and work together as a lab group 

(and focus on your choice of just one of your groups capstone projects for this lab). 

 

 
Tracking progress of an Agile project. A snapshot of an Agile project’s progression can be 

visually represented via burndown charts. We will use a variation of a burndown chart tailored 

for use with your capstone project (and the academic calendar!) called a Release Burndown 

Chart. In terms of the Scrum approach to managing Agile software development, a Release 

Burndown Chart represents the entire project as a single sprint.  A sample burndown chart is 

given at the bottom of this lab for use as a reference. 

 

1. Lab Requirements (see part 2 for specific deliverables):  

a. Individual effort calculation (work alone on this part). For each acceptance test 

plan test case in your capstone team’s Functional Requirements Trace Table, 

each lab group member is to work alone and assign a value representing the level 

of “effort” that they think it will take to design, implement, integrate and test that 

particular test case.  Use a (unitless) number from the Fibonacci Sequence 

(0,1,1,2,3,5,8,13,21,34,…) as the relative level of effort you assign to each 



acceptance test case.  You can use each Fibonacci number more than once for 

test cases requiring similar amounts of effort.   

i. Why the Fibonacci Sequence? Using the Fibonacci Sequence 

acknowledges the imprecision of such subjective valuations of effort. We 

are primarily interested in assigning a relative value of effort to 

accomplish each test case. The expanding spread of the Fibonacci 

Sequence numbers allows us to assign, to relatively hard to do things, 

relatively large effort values and vice versa.    

ii. For example, putting operational login buttons on a GUI might be 

assigned an effort level of ‘1’ while developing an algorithm for 

comparing color variations in images for detecting embedded 

steganographic messages might be a assigned a level of effort of ‘8’  

 

b. Effort consensus (work as a lab group on this part).  Once all lab group 

members are finished with part a: 

i. Effort consensus. Go through each acceptance test case as a group and 

reach consensus on what the group collectively thinks the effort valuation 

should be for each test case.  

ii. Primary developer assignment. Assign a team member as the primary 

developer to each acceptance test case (note that this may be different than 

the person assigned as the primary developer for the corresponding 

functional requirement). 

 

c. Effort refactoring (work as a lab group on this part).  For any acceptance test 

cases with effort levels of 13 or higher, review as a group whether the acceptance 

test case can be broken down into a set of smaller, testable, units that together 

meet the same requirement as the test case in question.    

i. If so, replace the original test case with the set of smaller test cases, and 

assign each of the smaller test cases an effort level and a primary 

developer.  

ii. These changes must be reflected in your Functional Requirements Trace 

Table for the next milestone.  

iii. Note that you will need to explain such changes to your Acceptance Test 

Plan with your Customer and get their concurrence.  

 

d. Refactoring Analysis (work as a lab group on this part).   

i. Refactoring. Regarding any Acceptance Test Plan test cases with an effort 

level of 13 or higher that you refactored in c above:  

1. Give the original test case (include the effort value). 

2. Give the set of replacement test cases (include the effort values). 

3. Give a discussion of how you refactored the original test case 

(what discrete chunks did you identify that allowed the 

refactoring?).  



ii. High effort level test cases remaining. Regarding any Acceptance Test 

Plan test cases with an effort level of 13 or higher that you chose not to 

refactor:   

1. Give the original test case (include the effort value). 

2. Explain why it is not possible to refactor this test case. 

 

e. Release Burndown Chart (work as a lab group on this part – see the sample 

burndown chart at the bottom of this file).   For your Release Burndown Chart, 

create a graph (neatly hand drawn is fine – see the course Resources page for a 

link to some printable graph paper) as follows:  

i. Title the chart “Release Burndown Chart for Team X: Project Name” 

(substitute your team’s number and the name of your project for “Team X: 

Project Name,” you may shorten the project name somewhat if needed). 

ii. The horizontal axis gives the time (use units of weeks) between when you 

started implementing your capstone (use 1 Nov) and when your capstone 

must be fully implemented (use the Wednesday before Spring Break). By 

“fully implemented,” we mean: 

1. 100% of your acceptance test cases completed to your Customer’s 

satisfaction,  

2. all system components integrated together and working with each 

other, and  

3. ready for your customer to begin alpha testing.  

iii. The vertical axis gives the amount of team-calculated, unitless, effort for 

each acceptance test case in your Acceptance Test Plan.  

iv. Starting Backlog: Add together all the effort valuations from your 

consensus results in part c. This is your total level of effort at the start of 

your project implementation and is known as your team’s Starting 

Backlog.   

v. Start datum: Plot the Starting Backlog value as the leftmost (Start) datum 

on your burndown chart. 

vi. End datum: Plot zero as the rightmost (End) datum on your burndown 

chart. 

vii. Ideal Work Remaining: Connect your Start and End points with a 

straight line.  This is your Ideal Work Remaining Line.   

1. Break and replot this line (see the sample burndown chart below) 

to represent extended periods such as Thanksgiving, winter break, 

and exam weeks in which you plan to make no progress on your 

capstone.  

2. Note that the slope of your Ideal Work Remaining Line increases 

when such breaks are included since no progress is planned during 

these breaks. Time, tide and formation wait for no one! 

viii. Actual Work Remaining: Plot the Actual Work Remaining as of today.  

resources.html


1. Do so by deducting from your backlog the sum of effort 

represented by the test cases you demo’d in your team’s Milestone 

4 (Part I - Progress Demo).  This results in your Remaining 

Backlog.   

2. Plot your Remaining Backlog value for the week in which these 

test cases were signed off on by your Customer as being completed 

to your Customer’s satisfaction.  

 

f. Project Status: Based on your Ideal Work Remaining vs Actual Work 

Remaining lines on your Release Burndown Chart: 

1. Give, both as an unreduced fraction as well as a percentage, your 

(Starting Backlog – Remaining Backlog) / Starting Backlog.   

2. Determine whether your capstone project is ahead, behind, or on 

schedule as of today.  Explain your answer. 

 

g. Workload Distribution Table (work as a lab group on this part). Give a table 

(see Table 0 below) with each team member listed in the left column (one per 

row).  

1. Left Column. In the left column, give each team member’s name (one 

per row). 

2. Center Column. In the center column, give each team member’s 

effort summation computed as the summation of the effort values of 

just the acceptance test cases for which the team member is listed as 

the primary developer.  

3. Right Column. In the right column, determine each team member’s 

workload percentage as the team member’s effort summation divided 

by your project’s Starting Backlog. Show the team member’s 

workload as both an unreduced fraction as well as a percentage. Note: 

If the right column were summed, you would get 100% 

4. Workload Analysis: Review your Workload Distribution Table and 

determine whether the project’s total workload is reasonably 

distributed across the team members.  Note that ‘reasonably 

distributed’ does not mean that everyone has the exact same workload 

percentage, rather, does the workload distribution make sense from the 

consensus perspective of the lab group. 

5. Workload Re-Distribution: 

a. If the workload is not reasonably distributed, identify changes 

to primary mids as needed to make the workload more 

reasonably distributed.   

b. If the workload cannot be reasonably distributed across the 

team members, explain why. 

 



Team 

Member 

Team member’s total 

effort summation  

Team member’s 

workload  

W.T. Door 35 35/83 = 42% 

J. Gish 20 20/83 = 24% 

J. Mid 28 28/83 = 34% 

Workload Analysis: The workload is not reasonably 

distributed across the team members. MIDN Gish’s workload 

needs to be increased so the workload is more evenly 

distributed across the project.   

Workload Re-distribution: Have MIDN Gish replace MIDN 

Door as the primary on the ‘restart from last saved state’ 

functional requirement’s acceptance test cases.     

Table 0. Workload Distribution 

 

h. ScrumMaster’s Plan for the sprint to the next milestone (work as a lab group 

on this part).   Scrum uses short, periodic, meetings where team members take 

stock of where they are on a project and reach consensus on what needs to be 

done next. Although the title of ScrumMaster sounds powerful, the 

ScrumMaster is not the project leader and is not held accountable for 

outcomes. The team as a whole is responsible for outcomes. For our purposes, 

the ScrumMaster is responsible for helping the team to reach consensus on: 

i. What can be achieved during the sprint to the next milestone?  

ii. Who will take the lead on accomplishing each item in the milestone 

sprint? 

iii. Where the team will be, relative to their burndown chart, presuming all 

items in the sprint are successful. 

iv. Who will take the lead on overcoming any known impediments? 

Prepare a ScrumMaster’s Plan for the sprint to the next milestone. Replace “X” in 

the below tables with the milestone number of the next milestone delivery. The 

filled out tables comprise your ScrumMaster’s Plan for the sprint to the next 

milestone delivery.  

 

ScrumMaster’s Plan for Milestone ‘X”.     ScrumMaster ___Gish_____ 

 

Lead Developers 

*see notes below 

Sprint Backlog (test cases being 

worked on) 
Expected “effort” 

value for each test 

case 



W.T. Door 1.1 Forgotten password and 1.7 FAQ 
page 

2 and 3 

J. Gish and S. Sam 3.2 Terrain map display - realistic 
shadow growth and motion at dusk. 

6 

J. Mid  5.7 Save gameplay to file for 
subsequent restart. 

4 

   

   

Table 1. Lead Developers and Sprint Backlog for Milestone “X” 

 
*Notes on Lead Developers.   

a) Every team member (including the ScrumMaster) must be assigned as a lead developer for at least one 

acceptance test case in each milestone sprint.  

b) Team members may need to be assigned as the lead developer to more than one test case (especially ones 

with low expected effort values). 

c) You may have up to two team members (one assigned as the lead developer and the other as the backup) to 

each acceptance test case in the milestone sprint (especially ones with high expected “effort’ values). 

 

Lead for addressing 

Unplanned 

Requirements/Test Cases 

Description of 

Unplanned 

Requirements/Test Cases 

Steps needed to address 

Unplanned Requirements/Test 

Cases 

J. Gish Customer wants to add 
a new functional 
requirement that shows 
a 30 second countdown 
timer. After the 
countdown timer 
elapses, player loses 
their turn.  

Add new requirement to 
Functional Requirements 
Trace Table.  Adjust 
Burndown chart to include 
replotting of Ideal Work 
remaining line.  Adjust 
Starting Backlog to include 
effort values related to new 
functional requirement. 

   

   

Table 2. Unplanned Requirements/Test Cases 

 

 

 

Projected Burndown at next 

milestone (projection must 

include impact of any 

Unplanned Requirements/Test 

Cases) 

Projected Project Status: Ahead, On, or Behind based 

on the requirements for the next milestone delivery and 

your projected burndown. Identify the amount for 

ahead or behind projections. 

25% Behind by 5% 
Table 3. Burndown Projection for Milestone “X” 

 



 

Lead for 

item 

Description of non-test case items 

W.T. Door Arrange Customer meetings.  
J. Gish Prepare Action Items list emerging from Customer 

meetings, and ID who has the lead for each action item 
J. Mid Prepare Milestone Delivery Presentation 

  

  

Table 4. Additional (non-test case) Items for Milestone “X” 

 

 

Lead for resolving 

impediment 

Description of 

impediment 

Steps needed to resolve 

impediment 

W.T. Door AttackGoat character’s 
movements on the game 
board are jerky. 

Figure out how the GPU can be 
used to speed up AttackGoat 
character’s refresh rate to 
produce a smoother display on 
the visual game board.  

   

   

Table 5. Remaining Known Impediments to date (Cumulative, not milestone-specific) 

 

2. Lab Deliverables:  Each lab group, put your names at the top of your papers and turn in 

your:  

a. Refactoring Analysis,  

b. Release Burndown Chart,  

c. Project Status,  

d. Workload Distribution table and 

e. ScrumMaster’s Plan (for the sprint to the next milestone).   

 

  



 

Sample Release Burndown Chart 

Assumes Starting Backlog is 83 

Assumes Remaining Backlog is 60 

 

 
% of Backlog Complete [as of 1st week of December] = (83-60)/83 = 23/83 = 27.7% 

Note that this chart shows the team to be slightly ahead of schedule. 

 

 

Notes on Release Burndown Charts 

X-Axis Project timeline (units of weeks) 

Y-Axis 
The work (in terms of unitless relative effort) that still needs to be completed for 

the project for all the remaining Acceptance Test Plan test cases. 

Project Start Point 
This is the farthest point to the left of the chart and represents day 0 of the 

project. 



Project End Point 
This is the point that is farthest to the right of the chart and occurs on the 

predicted last day of the project. 

Ideal Work 

Remaining Line 

Straight line connecting the start point to the end point. At the start point, the 

ideal line shows the sum of the estimates for all the tasks (work) that needs to be 

completed. At the end point, the ideal line intercepts the x-axis showing that 

there is no work left to be completed.  

1. This line may be broken to represent anticipated periods (such as Winter 

Break) during which no work will occur.  

2. If functional requirements and/or acceptance test cases are added or 

removed after the start of the project, this line will need to be redrawn 

from that point forward to reflect the updated Ideal Work Remaining. 

Actual Work 

Remaining Line 

Shows the actual work remaining at various points in the project’s timeline. At 

the start point, the actual work remaining is the same as the ideal work remaining 

but as time progresses, the actual work line fluctuates above and below the ideal 

line depending on the disparity between estimates and team effectiveness. This 

will look like a saw tooth as a project progresses due to the frequency of a 

Customer signing off on completed test cases - typically happen as part of a 

milestone delivery.  

Percentage of 

Backlog Complete 
Determined as (Starting Backlog – Remaining Backlog) / Starting Backlog.  

 


