
C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

1

Chap7 (Schach) Cohesion and Coupling

 Cohesion - degree of interaction within a module

 Coupling - degree of interaction between modules

 Want strong relationships between components within

modules:

 Want minimal relationships between modules:

• Aids in the localization of faults

• Clearer insight on how parts of the system could be reused

• Modules will be relatively independent

• Modifications to one subsystem will have little impact on

the other modules

C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

2

But Wait…. What’s a module?

 1974: “a set of one or more contiguous program statements

having a name by which other parts of the system can invoke

it, and preferably having its own distinct set of variable

names.” Sounds very generic but is actually too restrictive.

 1979: “a lexically contiguous sequence of program

statements, bounded by boundary elements, having an

aggregate identifier.” Our definition for this course.

 But wait, sir… What’s that mean?

Classical/Procedural Paradigm:

• a function or procedure

Object Oriented Paradigm:

• a class

• a method/function within an class

C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

3

Cohesion/coupling impacts Software Reuse

 Software Reuse: Using components from one product in the

developing a different product

Goal: Spend less on software production, but (hopefully)

get increased quality.

 What (exactly) is reused?

 Application system reuse

 Sub-system reuse

 Class reuse

 Functional (low-level) reuse

Domain-Independent

20%

Domain-Specific

65%

Application-Specific

15%

 Typically, software

breaks down into three

areas that impact reuse:

C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

4

Cohesion: Why are these things together?

 Ideal: A module implements a single logical function or entity

and all parts of the module contribute to this implementation.

 Measure of the strength

of the relationships

between functionality

within a given module

 Why do we care about a

module’s cohesion?

 Wanted: High (strong) cohesion so that the module will

have a high potential for reuse.

6.

Seven Levels of Cohesion

C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

5

(1) Coincidental Cohesion

 Arise from rules like: “Every module will consist of

between 35 and 50 statements”

 Lines of code not really related, just bundled together

Example:
short printNextLine(String inStr, short x, short y)

{ System.out.println(inStr);

resetScreen();

return x+y;

}

 What is printNextLine() intended to do?

 Why is Coincidental Cohesion so bad?

 Difficult to maintain, not reusable

 Easy to fix: Break into separate modules, each

performing more cohesive tasks

C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

6

(2) Logical Cohesion

A module contains related actions, caller selects which one to use

 Example 1:

someOperation (op code, dummy 1, dummy 2, dummy 3);

// dummy 1, dummy 2, and dummy 3 are dummy

// variables, not used if op code is equal to 7

 Example 2: One Module performs all input and output

 Example 3: OS/2

 A version of OS/2 had a logically cohesive module
with 13 different actions. Interface contained 21
arguments used to determine action selection.

 Why is logical cohesion so bad?

 The interface is difficult to understand

 Code for more than one action may be intertwined

 Difficult to reuse

C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

7

(3) Temporal Cohesion

 A series of actions related only by time (not sequence)

 Example: init()performs several functions that are only

related because they need to be done before other processing.

void init() {

openAccountDB();

openTransactionDB();

resetTransactionCount();

println(“Update in progress”);

…

}

 Why is temporal Cohesion so bad?

 Actions only weakly related to each other; they are more

strongly related to the "other" modules.

 Difficult to freely alter the "other" modules without also

affecting a temporally cohesive module.

C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

8

(4) Procedural Cohesion

 Performs a series of operations related by the sequence of steps

to be followed.

 In other words, the order matters, and changing the order would

mean that the module would no longer function correctly.

 Example:

void readPartNumberAndUpdateRepairRecordOnFile() {

…

}

 Why is Procedural Cohesion so bad?

 Actions are still only weakly connected, so module is not so

reusable

 Better: Break into separate modules

C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

9

(5) Communicational Cohesion

 Elements of a module perform a series of actions, and all

operate on the same input data

 Example 1

• update record in database and write it to audit trail

 Example 2

• write error message to screen, then to error log file

 Why is Communicational Cohesion so bad?

 Main drawback is lack of reusability.

 Can’t reuse the module unless all of its actions are
needed in the new system.

C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

10

Good forms of cohesion

 (6) Functional: Module performs exactly one (and

only one) operation or achieves a single goal.

 Great for isolating faults, but not very practical.

 Overkill for OOP (writing classes with only one method)

 (7) Informational: Performs a number of operations,

each with its own entry point, with independent code for

each operation, all performed on the same data structure.

 Examples:

• a well designed OO class

• an implementation of an

abstract data type

C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

11

ICE: Determine Cohesiveness based on Description

 Note: If a module

exhibits two levels of

cohesion, assign it the

lower (worst) level

B

A

C ED

F G

H

C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

12

ICE: Does good cohesion come from just using OO?

 High degree of cohesion is a feature of properly designed

object-oriented systems.

 OO design, if done right, does lead naturally to components

that are cohesive.

 Question: How should we design OO classes in order to

increase their cohesiveness?

C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

13

Five levels of Coupling

Couplings: Interactions between modules

 Loose -> good for maint/reuse

 Tight -> bad for maint/reuse

C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

14

Content Coupling

 (1) Content coupling - one module

directly references the contents of

the other.

 Class MultiplierUser

modifies the value of

multiplier directly so

they are content-coupled

 Other examples?

public class Multiplier {

public static int multiplier = 1;

public static int multiplierOf(int x) {

return (x* multiplier); }}

public class MultiplierUser {

int user() {

Multiplier.multiplier=3;

return Multiplier.multiplierOf(2));}}

C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

15

(2) Common coupling

 Modules directly access same data. Make use of shared

variables and read/write to the shared variables.

void sumOfTran() {

DB[0]=0; CR[0]=0;

for (short i=1; i<= numAcct; i++){

DB[0] += DB[i]; CR[0] += CR[i];

}

return;

} Other examples: global variables.

 Results in code with poor readability,

generally a hack to circumvent

scoping/visibility issues

 sumOfTran()sums shared

arrays and thus is common-

coupled with any other

modules referring to these

arrays.

C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

16

(3) Control Coupling

 Control coupling - One module tells another
module what to do via the info it passes to the
calling module.

short mySwitch(char opCode, short x, short y){

switch (opCode){

case ’+’ : return (x+y);

case ’-’ : return (x-y);

case ’*’ : return (x*y);

case ’/’ : return (x/y);

default: return 0;}

}
The two modules are not independent

 Caller must be aware of mySwitch’s internal structure.

 if mySwitch is altered during maintenance, Caller must be

made aware of the changes.

 mySwitch()’s caller passes

a control flag and is

control coupled with

mySwitch().

 Why is this so bad?

C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

17

(4) Stamp Coupling

 Data structure argument, but callee only ever operates on

just part of that data structure. Example,

short sumOfFirstTwo(short number[]) {

switch (number.len) {

case 0: return 0;

case 1: return number[0];

default: return (number[0]+number[1]);

}}

 sumOfFirstTwo() operates only on first two elements of

array parameter and is thus stamp-coupled with the caller.

 Passing entire array when only one or two cells are (at

most) needed

 Would rather not have module able to access entire array

if it is only supposed to need a single cell of array

C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

18

(5) Data Coupling

 Arguments are either

 a simple argument (integer), or

 a data structure in which all

elements are used by the callee

 Also: a class accessing it’s own data

members.

short sumOfArray(short number[]){

short result = 0;

for (i=0; i< number.len; i++)

result += number[i];

return result;

}

 sumOfArray()

accesses every

element parameter, so

is data coupled with

caller

 With data coupling, changing module is less likely to cause

fault in calling module, results in easier maintenance.

 Should strive for Data Coupling in OO software development

C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

19

ICE: Determine Couplings given Interface descriptions

Example: 1. When p calls q’s interface, p passes

one argument, an aircraft type, and q passes back a

“status flag”.

C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

20

Conditions for software development with reuse

 Must be possible to find appropriate reusable components.

 Re-user must have confidence that the components will

behave as specified and be reliable.

 Component documentation to help re-user

understand and adapt them

 Possible adverse affects of inheritance on reuse?

• With inheritance, code not collected together in one place

• Reuse of improper inheritance can lead to extra, unwanted

functionality.

• OOP has a lot going for it, but inheritance has not proven to

be a silver-bullet answer to re-usability.

C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

21

Consider our Craps Software

 ICE: Evaluate level of coupling

between MDICraps and

MDIGridBag

//In MDICraps actionPerformed():

if(e.getSource()== sendToCreatorButton){

creator.AddToCrapsTotal(bankRoll);

bankRoll = 0;

bankRollText.setText

(Integer.toString(bankRoll));}}

What if:
creator.crapsTotal+=bankRoll;

