
C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

1

Chap7 (Schach) Cohesion and Coupling

 Cohesion - degree of interaction within a module

 Coupling - degree of interaction between modules

 Want strong relationships between components within

modules:

 Want minimal relationships between modules:

• Aids in the localization of faults

• Clearer insight on how parts of the system could be reused

• Modules will be relatively independent

• Modifications to one subsystem will have little impact on

the other modules

C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

2

But Wait…. What’s a module?

 1974: “a set of one or more contiguous program statements

having a name by which other parts of the system can invoke

it, and preferably having its own distinct set of variable

names.” Sounds very generic but is actually too restrictive.

 1979: “a lexically contiguous sequence of program

statements, bounded by boundary elements, having an

aggregate identifier.” Our definition for this course.

 But wait, sir… What’s that mean?

Classical/Procedural Paradigm:

• a function or procedure

Object Oriented Paradigm:

• a class

• a method/function within an class

C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

3

Cohesion/coupling impacts Software Reuse

 Software Reuse: Using components from one product in the

developing a different product

Goal: Spend less on software production, but (hopefully)

get increased quality.

 What (exactly) is reused?

 Application system reuse

 Sub-system reuse

 Class reuse

 Functional (low-level) reuse

Domain-Independent

20%

Domain-Specific

65%

Application-Specific

15%

 Typically, software

breaks down into three

areas that impact reuse:

C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

4

Cohesion: Why are these things together?

 Ideal: A module implements a single logical function or entity

and all parts of the module contribute to this implementation.

 Measure of the strength

of the relationships

between functionality

within a given module

 Why do we care about a

module’s cohesion?

 Wanted: High (strong) cohesion so that the module will

have a high potential for reuse.

6.

Seven Levels of Cohesion

C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

5

(1) Coincidental Cohesion

 Arise from rules like: “Every module will consist of

between 35 and 50 statements”

 Lines of code not really related, just bundled together

Example:
short printNextLine(String inStr, short x, short y)

{ System.out.println(inStr);

resetScreen();

return x+y;

}

 What is printNextLine() intended to do?

 Why is Coincidental Cohesion so bad?

 Difficult to maintain, not reusable

 Easy to fix: Break into separate modules, each

performing more cohesive tasks

C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

6

(2) Logical Cohesion

A module contains related actions, caller selects which one to use

 Example 1:

someOperation (op code, dummy 1, dummy 2, dummy 3);

// dummy 1, dummy 2, and dummy 3 are dummy

// variables, not used if op code is equal to 7

 Example 2: One Module performs all input and output

 Example 3: OS/2

 A version of OS/2 had a logically cohesive module
with 13 different actions. Interface contained 21
arguments used to determine action selection.

 Why is logical cohesion so bad?

 The interface is difficult to understand

 Code for more than one action may be intertwined

 Difficult to reuse

C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

7

(3) Temporal Cohesion

 A series of actions related only by time (not sequence)

 Example: init()performs several functions that are only

related because they need to be done before other processing.

void init() {

openAccountDB();

openTransactionDB();

resetTransactionCount();

println(“Update in progress”);

…

}

 Why is temporal Cohesion so bad?

 Actions only weakly related to each other; they are more

strongly related to the "other" modules.

 Difficult to freely alter the "other" modules without also

affecting a temporally cohesive module.

C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

8

(4) Procedural Cohesion

 Performs a series of operations related by the sequence of steps

to be followed.

 In other words, the order matters, and changing the order would

mean that the module would no longer function correctly.

 Example:

void readPartNumberAndUpdateRepairRecordOnFile() {

…

}

 Why is Procedural Cohesion so bad?

 Actions are still only weakly connected, so module is not so

reusable

 Better: Break into separate modules

C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

9

(5) Communicational Cohesion

 Elements of a module perform a series of actions, and all

operate on the same input data

 Example 1

• update record in database and write it to audit trail

 Example 2

• write error message to screen, then to error log file

 Why is Communicational Cohesion so bad?

 Main drawback is lack of reusability.

 Can’t reuse the module unless all of its actions are
needed in the new system.

C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

10

Good forms of cohesion

 (6) Functional: Module performs exactly one (and

only one) operation or achieves a single goal.

 Great for isolating faults, but not very practical.

 Overkill for OOP (writing classes with only one method)

 (7) Informational: Performs a number of operations,

each with its own entry point, with independent code for

each operation, all performed on the same data structure.

 Examples:

• a well designed OO class

• an implementation of an

abstract data type

C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

11

ICE: Determine Cohesiveness based on Description

 Note: If a module

exhibits two levels of

cohesion, assign it the

lower (worst) level

B

A

C ED

F G

H

C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

12

ICE: Does good cohesion come from just using OO?

 High degree of cohesion is a feature of properly designed

object-oriented systems.

 OO design, if done right, does lead naturally to components

that are cohesive.

 Question: How should we design OO classes in order to

increase their cohesiveness?

C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

13

Five levels of Coupling

Couplings: Interactions between modules

 Loose -> good for maint/reuse

 Tight -> bad for maint/reuse

C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

14

Content Coupling

 (1) Content coupling - one module

directly references the contents of

the other.

 Class MultiplierUser

modifies the value of

multiplier directly so

they are content-coupled

 Other examples?

public class Multiplier {

public static int multiplier = 1;

public static int multiplierOf(int x) {

return (x* multiplier); }}

public class MultiplierUser {

int user() {

Multiplier.multiplier=3;

return Multiplier.multiplierOf(2));}}

C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

15

(2) Common coupling

 Modules directly access same data. Make use of shared

variables and read/write to the shared variables.

void sumOfTran() {

DB[0]=0; CR[0]=0;

for (short i=1; i<= numAcct; i++){

DB[0] += DB[i]; CR[0] += CR[i];

}

return;

} Other examples: global variables.

 Results in code with poor readability,

generally a hack to circumvent

scoping/visibility issues

 sumOfTran()sums shared

arrays and thus is common-

coupled with any other

modules referring to these

arrays.

C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

16

(3) Control Coupling

 Control coupling - One module tells another
module what to do via the info it passes to the
calling module.

short mySwitch(char opCode, short x, short y){

switch (opCode){

case ’+’ : return (x+y);

case ’-’ : return (x-y);

case ’*’ : return (x*y);

case ’/’ : return (x/y);

default: return 0;}

}
The two modules are not independent

 Caller must be aware of mySwitch’s internal structure.

 if mySwitch is altered during maintenance, Caller must be

made aware of the changes.

 mySwitch()’s caller passes

a control flag and is

control coupled with

mySwitch().

 Why is this so bad?

C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

17

(4) Stamp Coupling

 Data structure argument, but callee only ever operates on

just part of that data structure. Example,

short sumOfFirstTwo(short number[]) {

switch (number.len) {

case 0: return 0;

case 1: return number[0];

default: return (number[0]+number[1]);

}}

 sumOfFirstTwo() operates only on first two elements of

array parameter and is thus stamp-coupled with the caller.

 Passing entire array when only one or two cells are (at

most) needed

 Would rather not have module able to access entire array

if it is only supposed to need a single cell of array

C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

18

(5) Data Coupling

 Arguments are either

 a simple argument (integer), or

 a data structure in which all

elements are used by the callee

 Also: a class accessing it’s own data

members.

short sumOfArray(short number[]){

short result = 0;

for (i=0; i< number.len; i++)

result += number[i];

return result;

}

 sumOfArray()

accesses every

element parameter, so

is data coupled with

caller

 With data coupling, changing module is less likely to cause

fault in calling module, results in easier maintenance.

 Should strive for Data Coupling in OO software development

C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

19

ICE: Determine Couplings given Interface descriptions

Example: 1. When p calls q’s interface, p passes

one argument, an aircraft type, and q passes back a

“status flag”.

C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

20

Conditions for software development with reuse

 Must be possible to find appropriate reusable components.

 Re-user must have confidence that the components will

behave as specified and be reliable.

 Component documentation to help re-user

understand and adapt them

 Possible adverse affects of inheritance on reuse?

• With inheritance, code not collected together in one place

• Reuse of improper inheritance can lead to extra, unwanted

functionality.

• OOP has a lot going for it, but inheritance has not proven to

be a silver-bullet answer to re-usability.

C
h

7
:

C
o

u
p

li
n

g
 C

o
h

e
s

io
n

,
a

n
d

 P
o

ly
m

o
rp

h
is

m

21

Consider our Craps Software

 ICE: Evaluate level of coupling

between MDICraps and

MDIGridBag

//In MDICraps actionPerformed():

if(e.getSource()== sendToCreatorButton){

creator.AddToCrapsTotal(bankRoll);

bankRoll = 0;

bankRollText.setText

(Integer.toString(bankRoll));}}

What if:
creator.crapsTotal+=bankRoll;

