Chap7 (Schach) Cohesion and Coupling

O Cohesion - degree of interaction within a module

O Coupling - degree of interaction between modules

o Want strong relationships between components within
modules:

« Aids in the localization of faults
« Clearer insight on how parts of the system could be reused

=
o
L
o
| -
@)
£
=
@)
ol
©
C
©
&
e
0
(D)
L
@)
O
(@)
=

o Want minimal relationships between modules:
» Modules will be relatively independent

» Modifications to one subsystem will have little impact on
the other modules

But Wait.... What’s a module?

Q 1974: “a set of one or more contiguous program statements
having a name by which other parts of the system can invoke
It, and preferably having its own distinct set of variable
names.” Sounds very generic but is actually too restrictive.

Q 1979: “a lexically contiguous sequence of program
statements, bounded by boundary elements, having an
aggregate identifier.” Our definition for this course.

Q But wait, sir... What’s that mean?
0 Classical/Procedural Paradigm:
« a function or procedure

0 Object Oriented Paradigm:
e aclass
e a method/function within an class

S
D
<

o

| -

o

S
P

o
al
e

C

©

c
=

)

)
<

o
@)

o)

.

Cohesion/coupling impacts Software Reuse

QO Software Reuse: Using components from one product in the
developing a different product
Goal: Spend less on software production, but (hopefully)

get increased quality.
o Typically, software

breaks down Into three

areas that impact reuse:
0 Application system reuse Domain-Specific

Domain-Independent 65%
0 Sub-system reuse 20%
0 Class reuse

a Functional (low-level) reuse

O What (exactly) is reused?

Application-Specific
15%

&
&
<
o
| -
o
&
=
o
al
e
C
S
c
=
»
)
e
o)
O
o
.
l

Cohesion: Why are these things together?

O ldeal: A module implements a single logical function or entity
and all parts of the module contribute to this implementation.

Seven Levels of Cohesion

0 Measure of the strength
of the relationships Informational cohesion (Good)
between functionality Functional cohesion

within a given module Communicational cohesion

=
o
L
o
| -
@)
£
=
@)
ol
©
C
©
&
e
0
(D)
L
@)
O
(@)
=

Procedural cohesion

o Why do we care about a
module’s cohesion?

Temporal cohesion

Logical cohesion

— L & by O N

Coincidental cohesion (Bad)

» Wanted: High (strong) cohesion so that the module will
have a high potential for reuse.

(1) Coincidental Cohesion

Q Arise from rules like: “Every module will consist of
between 35 and 50 statements”™

Q Lines of code not really related, just bundled together

Example:

short printNextLine (String 1inStr, short x, short vy)
{ System.out.println (inStr);

resetScreen|() ;

return x+y;

}
0 What is printNextLine() intended to do?

o Why is Coincidental Cohesion so bad? -
o Difficult to maintain, not reusable

0 Easy to fix: Break into separate modules, each
performing more cohesive tasks 5

S
D
<

o

S

o

S
=

o
al
e

C

©

-
=

)

)
<

o
@)

“i

(2) Logical Cohesion

A module contains related actions, caller selects which one to use
o Example 1.

someOperation (op code, dummy 1, dummy 2, dummy 3);
// dummy 1, dummy 2, and dummy 3 are dummy

// variables, not used if op code is equal to 7

Q Example3 0S/2

0 A version of OS/2 had a logically cohesive module
with 13 different actions. Interface contained 21
arguments used to determine action selection.

o Why is logical cohesion so bad?
a The interface is difficult to understand
0 Code for more than one action may be intertwined
a Difficult to reuse

&
=
<
o
S
o
&
=
o
al
=
c
M
-
=
0
)
=
o
@)
)
c

(3) Temporal Cohesion

O A series of actions related only by time (not sequence)

o Example: init () performs several functions that are only
related because they need to be done before other processing.
volid init () { & B A
openAccountDB () ; " S
openTransactionDB () ;

resetTransactionCount () ;

=
o
L
o
| -
@)
=
>
@)
al
©
-
@©
©
S
7))
@
i
O
@)

println (“Update 1n progress”);

)
o Why is temporal Cohesion so bad?

0 Actions only weakly related to each other; they are more
strongly related to the "other" modules.

a Difficult to freely alter the "other" modules without also
affecting a temporally cohesive module. 7

(4) Procedural Cohesion

O Performs a series of operations related by the sequence of steps
to be followed.

Q In other words, the order matters, and changing the order would
mean that the module would no longer function correctly.

o Example:
vold readPartNumberAndUpdateRepairRecordOnFile () {

S
D
<

o

| -

o

S
2

o
al
e

C

©

c
=

)

)
<

o
@)

o)
.

O Why is Procedural Cohesion so bad?

0 Actions are still only weakly connected, so module is not so
reusable

0 Better: Break into separate modules

(5) Communicational Cohesion

O Elements of a module perform a series of actlons and all
operate on the same input data

0 Example 1
* update record in database and write it to audit trail
0 Example 2
* Write error message to screen, then to error log file

o Why i1s Communicational Cohesion so bad?
o Main drawback is lack of reusability.

a Can’t reuse the module unless all of its actions are
needed In the new system.

S
D
<

o

S

o

S
P

o
al
e

C

©

-
=

)

)
<

o
@)

l

Good forms of cohesion

Q (6) Functional: Module performs exactly one (and
only one) operation or achieves a single goal.
o Great for isolating faults, but not very practical.
a Overkill for OOP (writing classes with only one method)

o (7) Informational: Performs a number of operations,
each with its own entry point, with independent code for
each operation, all performed on the same data structure.

o Examples: I-— ———
[I \
a well designed OO class ; call '\
e animplementationofan = = a—
hod
abstract data type | liedgere |
I ze_tSp(n;eed() getSpeed() I

10 A

&
&
<
o
| -
o
&
2
o
al
e
C
S
c
=
»
)
e
o)
O
o
.
l

ICE: Determine Cohesiveness based on Description

o Note: If a module A
exhibits two levels of compute average
- . : daily temperatures
cohesion, assign it the at various sites

lower (worst) level

N\

ngCohesion, and Polymorphism

B C D \ E
initialize sums create new store close files and
and temperature temperature print average
open files record record temperatures
F G
................... |
- - , read in site, store record
7 Informational cohesion (Good] || " o fol speaif
Functional cohesion i temperature site
5. Communicational cohesion I
4. Procedural cohesion | H
3. Temporal cohesion | .
; _ | edit site, time,
2. logical cohesion | or temperature
1. Coincidental cohesion Bad) |- field
I

S
D
<

o

S

o

S
P

o
al
e

C

©

-
=

)

)
<

o
@)

l

ICE: Does good cohesion come from just using OQO?

O High degree of cohesion iIs a feature of properly designed
object-oriented systems.

0 OO design, if done right, does lead naturally to components
that are cohesive.

0 Question: How should we design OO classes in order to
Increase their cohesiveness?

Relationship between Coupling
and Cohesion

High High

Low

Low 12

Couplings: Interactions between modules
o Loose -> good for maint/reuse
o Tight -> bad for maint/reuse

=
o
L
o
| -
@)
£
=
@)
ol
©
C
©
°
e
0
(D)
L
@)
O
(@)
=

les indecdeperdansy r.

less co-ordinafy gu

DATA _ STAMP - Co uTROLL - Cojf Mo N

Five levels of Coupling

— N LW B O

Data coupling (Good|
Stamp coupling

Control coupling

Common coupling

Content coupling (Bad)

ore ‘oh"ﬁf‘dergnph ,,;7

Less infurmation Aew Wert €0-ordinafio

-~ CONTENT 13

Content Coupling

0 (1) Content coupling - one module
directly references the contents of
the other.

public class Multiplier {
public static int multiplier = 1;
public static int mul?irplierOf(int X) {
return (x* multiplier); }}

public class MultipI;IerUser {

int user() { |
Multiplier.multiplier=3; o ClassMultiplierUser

return Multiplier.multiplierOf(2));}} modifies the value of
multiplier directly so

they are content-coupled
Q Other examples?

S
D
<

o

S

o

S
=

o
al
e

C

©

-
=

)

)
<

o
@)

l

14

(2) Common coupling

O Modules directly access same data. Make use of shared
variables and read/write to the shared variables.

QO sumOfTran ()sums shared
arrays and thus is common-
coupled with any other
modules referring to these
arrays.

void sumOfTran () {
DB[0]=0; CR[O0]=0;
for (short 1=1; i<= numAcct; 1++) {
DB[O] += DB[1]; CR[O] += CRI[1];
}

return;

} Other examples: global variables.

O Results in code with poor readability,
generally a hack to circumvent
scoping/visibility issues 15

g Cohesion, and Polymorphism

(3) Control Coupling

O Control coupling - One module tells another
module what to do via the info it passes to the
calling module.

short mySwitch (char opCode, short x, short y) {
switch (opCode) { O mySwitch()’s caller passes

=
o
L
o
| -
@)
£
=
@)
ol
©
C
©
°
e
0
(D)
L
@)
O
(@)
=

case '+’ : return (x+vy); a control flag and is
case '-’ : return (x-y); control coupled with
case ’"*’ : return (x*y); rnysmﬂuﬁK)

case '/’ : return (x/y):;

’ O Why is this so bad?
default: return 0;}

The two modules are not independent
O Caller must be aware of mySwitch’s internal structure.

o If mySwitch is altered during maintenance, Caller must be
made aware of the changes.

16

(4) Stamp Coupling

O Data structure argument, but callee only ever operates on
just part of that data structure. Example,

short sumOfFirstTwo (short number[]) {
switch (number.len) {

case 0: return O0;

case 1: return number[0];

default: return (number|[0]+number[1l])

I

o sumOfFirstTwo() operates only on first two elements of
array parameter and is thus stamp-coupled with the caller.

g Cohesion, and Polymorphism

Q Passing entire array when only one or two cells are (at
most) needed

o Would rather not have module able to access entire array
If it is only supposed to need a single cell of array 17

(5) Data Coupling

O Arguments are either
a a simple argument (integer), or

0 a data structure in which all
elements are used by the callee

O Also: a class accessing it’s own data

&
=
<

o

S

o

&
=

o
al
=

c

M

=
=

0

)
<

o
@)

)

c

members. 0 sumOfArray ()
short sumOfArray (short number[]) { dCCEeSSesS every
short result = 0; element parameter, so
for (i=0; i< number.len; i++) IS data coupled with
result += number([i]; caller

return result;

' 4 With data coupling, changing module is less likely to cause

fault in calling module, results in easier maintenance.
a Should strive for Data Coupling in OO software developmgnt

|CE: Determine Couplings given Interface descriptions

Example: 1. When p calls q’s interface, p passes
one argument, an aircraft type, and q passes back a
1 “status flag”.

Number In Out

p, t, and u access
q 2 the same database
in update mode

aircraft type status flag

list of aircraft parts -

function code —

list of aircraft parts —

part number part manufacturer

&
=
<

o

S

o

&
=

o
al
=

c

M

-
=

0

)
<

o
@)

)

c

w
=
o O LN —

r S part number part name

Data coupling (Good|

Stamp coupling

Control coupling

Common coupling

S0 PR s

Content coupling (Bad)

19

Conditions for software development with reuse

O Must be possible to find appropriate reusable components.

0 Re-user must have confidence that the components will
behave as specified and be reliable.

a Component documentation to help re-user
understand and adapt them

g Cohesion, and Polymorphism

O Possible adverse affects of inheritance on reuse?

- With inheritance, code not collected together in one place

- Reuse of improper inheritance can lead to extra, unwanted
functionality.

- OOP has a lot going for it, but inheritance has not proven to
be a silver-bullet answer to re-usability.

20

Consider our Craps Software

2]

creator.AddToCrapsTotal (bankRoll) ;

v What if:

bankRoll = 0; AN

Q\creator.crapsTotal+=bankRoll;

bankRollText.setText

(Integer.toString (bankRoll)); }}
21

0
L
o
— . MDICraps
o - Lint =
2 O ICE: Evaluate level of coupling e
COMTIMNUE : it = 2
> firstRoll : boolean = tr
= between MDICraps and e s ™
Paoirt : int =0
al 1 MDIGricBag ::;-Ii:nestatus - int = CONTINUE
o) M D I G rl d Bag LobLavout | GridBaglavout bankRoll ; int = 50
c LobhConstraints | GridBagConstraints diellabel . JLabel
Loontainer ;| Cortainer die2Label . JLabel
(qv) . terapsTotal | int 1 sumLabel ; JLabkel
B | 5 Daacopling (Good) || [<Al s
(@) | Linfile Fileln.putStream firstDie JTE}:tFieI;::i
. — 4 Smep COUp Ing | clatalnputStream : DatalnputStream secondDie ; JTextField
7)) Hinit() : void sum ; JTextField
(ah) 1 LaddComponertic ; Component) ; void fagint : JTextField
— 3. COﬂthl COUpl'ng +actionPerformed(e ;| ActionEvent) : void gameResutt : JTextField
(@) ’ Halay Crapsiindow () © void roll : JEutton
O 2 Common Couphng addToCrapsTotallamount ToAdd ; int) : vaid Eﬂntgﬂ::%ﬂ?dﬂ :.J#L?:EEIEI ¥
LoetDataFromFilel) | String ankRollText : JTextFie
’ zave JButon
&) | 1. Content couplmg (Bod) creator : MDIGridBaa
(- sendToCreatorButton ; JButton
o outFile : Bufferedriter
o #DICraps(creatarLink | MDIGridEad)
. #actionPerformedie ;. ActionEvert) : void
//In MDICraps actionPerformed () : [I AT Ll
Hpalay(d : vioi
. HrallDicel) it
1f (e.getSource () == sendToCreatorButton) {

