
T
e
s
ti

n
g

 D
u

ri
n

g
 I
m

p
le

m
e
n

ta
ti

o
n

1

Testing During Implementation (Schach, Chap 15)

 Software glitches leave
Navy “smart ship” dead
in the water.

 USS Yorktown towed
to Norfolk due to a
database overflow
caused by the
propulsion system
(Slabodkin July ‘98)

T
e
s
ti

n
g

 D
u

ri
n

g
 I
m

p
le

m
e
n

ta
ti

o
n

2

Testing During Implementation

 Once Source Code Available, can test code's Execution

 One way — Arbitrary input; see what happens.

 Needed — Systematic test case development

 Regression testing: Re-run previously passed test cases

Make sure system modifications didn’t break something that
used to work.

 ESA lost Ariane 5 rocket due to
numerical precision in inertial
reference system (Gleick 96)

 64 bit floating point horizontal
velocity converted to a 16 bit
signed int.

 Conversion over 32,767 failed 37
seconds after liftoff ($500
Million).

T
e
s
ti

n
g

 D
u

ri
n

g
 I
m

p
le

m
e
n

ta
ti

o
n

3

Two Approaches to Testing

 Testing To Specifications (aka Black-Box Testing,

functional testing) Focus: what module is supposed to do,

not how it does it.

 Testing To Code (aka Glass-Box Testing)

 Focus: how code in module is

structured, not what its supposed to do

 Info for test cases comes

from specification (ie. your

acceptance test plan)

 The code itself is tested, w/o

regard to specifications

Events: External Conditions that set

the Context of the module

T
e
s
ti

n
g

 D
u

ri
n

g
 I
m

p
le

m
e
n

ta
ti

o
n

4

Feasibility of Complete Black-Box/Glass-Box Testing

 The Art of Testing:

 Want: A small, manageable set of test cases:

• Maximize Chances of Detecting Fault, While

• Minimizing Chances of Wasting Testing $$$

Goal: Construct every test case so as to Detect Previously

Undetected Fault (ie., minimize overlap between test cases).

 Dijkstra [1972]: “Testing can show the Presence of Bugs, but is

hopelessly inadequate for showing the Absence of Bugs.”

T
e
s
ti

n
g

 D
u

ri
n

g
 I
m

p
le

m
e
n

ta
ti

o
n

5

Equivalence Classes and Edge Cases

 Acceptance test (ex: black box testing) => handle any

number of input values in the range 1 … 16,383

 Basic idea: If system works for one test case

in the range (1..16,383), then will probably work

for any other test case in that range;

• so, don’t waste $$$ with nearly redundant testing.

• Instead focus on equivalence classes and edge cases

Break 1..16,383 into three equivalence classes:

…, -1, 0, 1, 2, …, 16382, 16383, 16384, …{ }

Equivalence

Class 1: Fewer

than 1 record

{ }

Class 2:

Between 1 and

16,383 records

{ }

Class 3: More

than 16,383

records

T
e
s
ti

n
g

 D
u

ri
n

g
 I
m

p
le

m
e
n

ta
ti

o
n

6

Glass Box testing (testing to code)

 If it is desired that each path through module be executed at

least once, combinatorial explosion may result

// kmax in an int between 1..18

// myChar is A, or B, or C

 Note: other coverage is possible,

such as branch or statement coverage

T
e
s
ti

n
g

 D
u

ri
n

g
 I
m

p
le

m
e
n

ta
ti

o
n

7

Fault Distribution is not Uniform

 [Myers]: 47% of faults in OS/370 were in only 4% of the

modules

 [Endres]: DOS/VS (Release 28):

 512 faults in a total of 202 modules

• 112 of the modules had only one fault

• There were modules with 14, 15, 19 and 28 faults,

respectively

– The latter three were the largest modules in the

product, with over 30000 lines of DOS macro

assembler language

– The module with 14 faults was relatively small, and

very unstable. What should be done with this module?

T
e
s
ti

n
g

 D
u

ri
n

g
 I
m

p
le

m
e
n

ta
ti

o
n

8

Complexity Metrics: Making Testing Manageable

 Goal of Using a Software Complexity Metric:

 Highlight Modules Mostly

Likely To Have Faults

 Quality Assurance

approach to Testing

 Would be beneficial to be able to say, “Module M1 is

More “Complex” than Module M2”

 Problem: what do you do when you discover an

unreasonably high Complexity Value for a Module?

T
e
s
ti

n
g

 D
u

ri
n

g
 I
m

p
le

m
e
n

ta
ti

o
n

9

Lines of Code as a Complexity Metric

 Simplest Complexity Measure; Underlying Assumption:

 There exists a Constant Probability p that Line of Code
Contains Fault. Based on the idea that the past can be used
to predict the future.

 Example:

• Tester Believes Line of
Code Has 2% Chance of
Containing Fault.

• Module Under Test is 100
Lines Long, Probably
Contains 2 Faults

T
e
s
ti

n
g

 D
u

ri
n

g
 I
m

p
le

m
e
n

ta
ti

o
n

10

McCabe's Cyclomatic Complexity Metric

 Cyclomatic Complexity Metric M (McCabe, 76)

 Essentially the # of Decisions in Module

• M = #edges - #nodes +2

 Can be used as a Metric for predicting the #

of Test Cases needed for Branch Coverage

 M Value for Aegis System (Walsh,79)

 276 modules in Aegis

 23% of modules with M > 10 contained 53% of detected faults

 Modules with M > 10 had 21% more faults per line of code

 Industry consensus: Re-design/implement modules with M > 10

http://www.naval-technology.com/projects/burke/burke6.html

T
e
s
ti

n
g

 D
u

ri
n

g
 I
m

p
le

m
e
n

ta
ti

o
n

11

sequence

selection

(if-else)

switch (3 explicit cases

+ implicit default)

while loop repeat – until loop function call foo()

false

foo()

true

Statement to Graph Conversions

McCabe’s Metric -> M = #edges - #nodes +2

x=8;

y=3;

M=1-2+2=1

M=2-3+2=1M=3-3+2=2

M=7-5+2=4M=4-4+2=2

M=3-3+2=2

T
e
s
ti

n
g

 D
u

ri
n

g
 I
m

p
le

m
e
n

ta
ti

o
n

12

ICE: Applying McCabe’s Metric

1. Use statement to graph conversions to
build a graph representing the source
code

2. Count num edges (#e), num nodes (#n)

3. Compute McCabe’s Metric M = #e-#n+2

4. M > 10 is overly complex. Consider Re-
designing Module

5. Graph gives insight on how to reduce
complexity.

6. M value gives the recommended number
of test cases needed for branch coverage.

switch a {

case 1: x =3;

break;

case 2: if (b == 0)

x=2;

else

x=4;

break;

case 3: while (c>0)

process(c);

break;

}

T
e
s
ti

n
g

 D
u

ri
n

g
 I
m

p
le

m
e
n

ta
ti

o
n

13

What does detection of a fault tell us?

 What does the detection of a fault within a module tell us

about the probability of the existence of additional faults in

the same module?

 [Myers]: When a module

has too many faults =>

 It is cheaper to redesign,

recode module than to

try to fix its faults

 Does finding a fault

have any bearing on

whether other faults

are present?

