Testing During Implementation (Schach, Chap 15)

O Software glitches leave
Navy “smart ship” dead
In the water.

o USS Yorktown towed
to Norfolk due to a
database overflow
caused by the

propulsion system
(Slabodkin July ‘98)

c
@)
=
©
—
c
(D)
&
Q
o
£
(@))
c
—
-
O
(@))
c
=
n
(D)
I_

G5M2 Shane K. Hightower, a Ft. Pierce, Fla., native, monitors
the damage control reporting system aboard USS Yorktown.
This computerized system collects data on the status of the
ship and feeds it through the local area network to five control
stations, eliminating the need for messengers and phone
talkers at various damage control stations. Should one
control station be disabled, the others can still manage any
battle damage problem.

OUR GOAL IS TO WRITE
BUGFREE SOFTLARE .

I'LL PAY A TEN-DOLLAR -
BONUS FOR EVERY BUG .
YOU FIND AND FIX,

£l L HOPE T'™M GONNA

=1 THIS WRITE ME A
£| DRIVES NEW, MINIVAN
2| THE RIGHT THIS AFTER-
+| BEHAVIOR. NOON!

S&AOL.COM

11/13 © 1995 Unites Fentu

S Adnurs E-mail: SCOTTADAM

Testing During Implementation

O Once Source Code Available, can test code's Execution
0 One way — Arbitrary input; see what happens.
0 Needed — Systematic test case development

O Regression testing: Re-run previously passed test cases

Make sure system modifications didn’t break something that
used to work. F

c
O
=
©
—
-
)
&
Q
o
£
(@)
-
—
-
O
(@)
c
=
0
()
|_

O ESA lost Ariane 5 rocket due to
numerical precision in inertial
reference system (Gleick 96)

0 64 bit floating pointhorizontal

velocity convertedto a 16 bit
signed int. "

a Conversionover 32,767 failed 37 |
seconds after liftoff ($500 |
Million).

Two Approaches to Testing

O Testing To Specifications (aka Black-Box Testing,
functional testing) Focus: what module is supposed to do,
not how It does it. -

a Info for test cases comes
from specification (ie. your
acceptance test plan)

c
O
=
©
—
-
)
&
Q
o
£
(@))
c
—
-
O
(@))
c
=
0
)
I_

Events: External Conditions that set
the Context of the module

O Testing To Code (aka Glass-Box Testing i_

a Focus: how code in module i1s
structured, not what its supposed to do * *

0 The code itself is tested, w/o ?
regard to specifications)

Feasibility of Complete Black-Box/Glass-Box Testing

Q Dijkstra [1972]: “Testing can show the Presence of Bugs, but is
hopelessly inadequate for showing the Absence of Bugs.”

O The Art of Testing:
0 Want: A small, manageable set of test cases:
« Maximize Chances of Detecting Fault, While
e Minimizing Chances of Wasting Testing $$$

c
O
=
©
—
-
)
&
Q
o
£
(@))
-
—
-
O
(@))
c
=
0
)
|_

Goal: Construct every test case so as to Detect Previously
Undetected Fault (ie., minimize overlap between test cases).

Equivalence Classes and Edge Cases

O Acceptance test (ex: black box testing) => handle any
number of mput values in therange 1 ... 16,383

0 Basic idea: If system works for one test case
In the range (1..16,383), then will probably work
for any other test case in that range;

* 50, don’t waste $$$ with nearly redundant testing.
* Instead focus on equivalence classes and edge cases

c
O
=
©
—
-
)
&
Q
o
£
(@))
c
—
-
O
(@))
c
=
0
)
I_

Break 1..16,383 into three equivalence classes:
{...,-1, 0}{1, 2, ..., 16382, 16383,}{16384, ... }

Equivalence Class 2: Class 3: More
Class 1: Fewer Between 1 and than 16,383
than 1 record 16,383 records records

Glass Box testing (testing to code)

O If it is desired that each path through module be executed at
least once, combinatorial explosion may result

read (kmax) /[kmax in an int between 1..18 l :
for (k = 0; k < kmax; k++) do (I:
{

read (myChar) ~ // myChar is A, orB, orC blockA blockB

switch (myChar)
{ |

case ‘A’"; l
blockA; @ true | e true @
if (cond1) blockC;

br eak; false l false
case 'B”: e
blockB; T
if (cond2) blockC;
break; blockD
case 'C": l
blockC;
break; loop = 18 times

c
@)
=
©
—
-
(D)
&
Q
o
£
(@))
c
—
-
O
(@))
c
=
0
(D)
I_

}blocko, O Note: other coverage is possible,
such as branch or statement coverage

Fault Distribution is not Uniform

QO [Myers]: 47% of faults in OS/370 were in only 4% of the

modules —
DOS/VS

O [Endres]: DOS/VS (Release 28): Disk Operating System /
Virtual Storage
0 512 faults in a total of 202 modules
112 of the modules had only one fault

» There were modules with 14, 15, 19 and 28 faults,
respectively
— The latter three were the largest modules in the

product, with over 30000 lines of DOS macro
assembler language

— The module with 14 faults was relatively small, and
very unstable. What should be done with this module?

v

c
@)
=
©
—
-
(D)
&
Q
o
£
(@))
c
—
-
O
(@))
c
=
n
(D)
I_

Complexity Metrics: Making Testing Manageable

O Goal of Using a Software Complexity Metri(:'

a Highlight Modules Mostly
Likely To Have Faults

2\ METRICs“

) ’—7——%;‘

O Quality Assurance A
approachto Testing R .t

0 Would be beneficial to be able to say, “Module M1 1s
More “Complex” than Module M2”

O Problem: what do you do when you discover an
unreasonably high Complexity Value for a Module?

G

\&D)

c
@)
=
©
—
-
(D)
&
Q
o
£
(@))
c
—
-
O
(@))
c
=
0
(D)
I_

Lines of Code as a Complexity Metric

o Simplest Complexity Measure; Underlying Assumption:

0 There exists a Constant Probability p that Line of Code
Contains Fault. Based on the idea that the past can be used

to predict the future.

OKAY, T THINK T'M ‘ GREAT! AFTER THAT,
STARTING TO LINDERSTAND YOU CAN START ON THIS
0 Exampl e: THIS SOLRCE CODE... ‘ DATABASE DRIVER.

e Tester Believes Line of
Code Has 2% Chance of
Containing Fault.

 Module Under Test 1s 100
Lines Long, Probably
Contains 2 Faults

c
O
=
©
—
-
)
&
Q
o
£
(@))
c
—
-
O
(@))
c
=
0
)
I_

McCabe's Cyclomatic Complexity Metric

o Cyclomatic Complexity Metric M (McCabe, 76)
0 Essentially the # of Decisions in Module
= #edges - #nodes +2

0 Can be used as a Metric for predicting the #
of Test Cases needed for Branch Coverage

c
O
=
©
—
-
)
&
Q
o
£
(@))
-
—
-
O
(@))
c
=
0
)
|_

O M Value for Aegis System (Walsh,79)

0 276 modules in Aegis
0 23% of modules with M > 10 contained 53% of detected faults

0 Modules with M > 10 had 21% more faults per line of code

O Industry consensus: Re-design/implement modules with M > 10
10

http://www.naval-technology.com/projects/burke/burke6.html

2 Statement to Graph Conversions

é selection switch (3 explicit cases
2 sequence (if-else) + implicit default)

E x=8; true false -

=

S V= 3;

S M=l2+2=1 M=4-4+2=2 M=7-5+2=4

7p)

)

- while loop repeat — until loop function call foo ()

foo ()
M=3-3+2=2 M=3-3+2=2 M=2-3+2=1

McCabe’s Metric -> M = #edges - #nodes +2 11

c
@)
=
©
—
c
(D)
&
Q
o
£
(@))
c
—
-
O
(@))
c
=
n
(D)
I_

1.

w

ICE: Applying McCabe’s Metric

Use statement to graph conversions to
build a graph representing the source
code

. Count num edges (#e), num nodes (#n)
. Compute McCabe’s Metric M = #e-#n+2

M > 10 is overly complex. Consider Re-
designing Module

. Graph gives insight on how to reduce

complexity.
M value gives the recommended number
of test cases needed for branch coverage.

switch a {
case 1: x =3;
break;
case 2: if (b ==0)
X=2;
else
X=4;
break;
case 3: while (c>0)
process(c);
break;

12

the same module?

0 Does finding a fault
have any bearing on
whether other faults
are present?

c
@)
=
©
—
c
(D)
&
Q
o
£
(@))
c
—
-
O
(@))
c
=
n
(D)
I_

O [Myers]: When a module
has too many faults =>
Q It is cheaper to redesign,

recode module than to
try to fix its faults

What does detection of a fault tell us?

O What does the detection of a fault within a module tell us
about the probability of the existence of additional faults in

IF WE BUILD OUR
SOFTWARE WITH NO
BUGS, WE CAN MAKE A
10% RETURN ON OUR
INVESTMENT.

Dilbert.com DilbertCartoonist@gmail.com

BUT IF WE DO A POOR
JOB, WE CAN MAKE A '
40% RETURN BY SELLING |
UPGRADES AND SERVICE. |

%)

13

