
C
h

1
: 

T
h

e
 S

c
o

p
e

 o
f 

S
o

ft
w

a
re

 E
n

g
in

e
e

ri
n

g

1

Scope of Software Engineering (Schach Ch1)

 Software Engineering's aim: 

 produce fault-free SW                                           that 
meets user's needs 

 delivered on time/in budget

 Easy to modify when user's                                
needs change

 Historical Aspects: 1968 NATO Conference

Goal: to solve the “Software Crisis”

Overlooked: bridges not same as software

 Question: Is "Software Engineering" the                
same as “Engineering?” How are bridge building and 
software development similar, how are they different?



C
h

1
: 

T
h

e
 S

c
o

p
e

 o
f 

S
o

ft
w

a
re

 E
n

g
in

e
e

ri
n

g

2

ICE: Building Bridges vs. Building Software

Issue Bridge Software

Complexity

(Maturity of Field)

(Im)perfect 

engineering

(Expected 

Conditions)

Maintenance

(Scale) ?

Collapse

(Fix or replace) ?

Bridges around since a tree 

fell across a stream.  

Fundamentals of bridge 

design don't change rapidly

Built to withstand all 

expected conditions

Remove rust and paint, 

wouldn't even consider 

rotating 90 degrees

Rebuild rather than 

repair

50 years (only) of software 

development. Rapidly 

evolving principals



C
h

1
: 

T
h

e
 S

c
o

p
e

 o
f 

S
o

ft
w

a
re

 E
n

g
in

e
e

ri
n

g

3

ICE: Building Bridges vs. Building Software

Issue Bridge Software

Complexity

(Maturity of Field)

(Im)perfect 

engineering

(Expected 

Conditions)

Maintenance

(Scale) ?

Collapse

(Fix or replace) ?

Bridges around since a tree 

fell across a stream.  

Fundamentals of bridge 

design don't change rapidly

Built to withstand all 

expected conditions

Remove rust and paint, 

wouldn't even consider 

rotating 90 degrees

Rebuild rather than 

repair

50 years (only) of software 

development. Rapidly 

evolving principals

Attitude: cannot 

anticipate all unexpected

conditions



C
h

1
: 

T
h

e
 S

c
o

p
e

 o
f 

S
o

ft
w

a
re

 E
n

g
in

e
e

ri
n

g

4

“Classical” Software Life Cycle

Series of Development Steps, from Concept Exploration 
through Final Retirement, Broken into 6 Phases:

 Requirements phase (concept explored, includes rapid 
prototyping)

 Specification/Analysis phase (contract)

 Design phase 

• high-level (architectural design => modules)

• detailed (design of each module)

 Implementation phase (coding/testing)
• Unit testing

• Integration of sub-systems

 Maintenance phase (any changes after acceptance)

 Retirement



C
h

1
: 

T
h

e
 S

c
o

p
e

 o
f 

S
o

ft
w

a
re

 E
n

g
in

e
e

ri
n

g

5

Spending on software development

 ICE: How much would you plan to spend assuming 

you have a $100k budget to develop/deliver a product?  

i.e. ignore post-delivery maintenance & retirement

 Phases/Groups:

 Requirements & Analysis

 Design

 Implementation: Coding & Unit Testing

 Implementation: Integration

How does your plan compare with industry 

averages?



C
h

1
: 

T
h

e
 S

c
o

p
e

 o
f 

S
o

ft
w

a
re

 E
n

g
in

e
e

ri
n

g

7

Spending on software development (con’t)

 ICE Continued: Assuming that you spent the $100k to 

develop/deliver a product…

How much additional money would you need to budget 

for post-delivery maintenance?

How does your plan compare with industry 

averages?



C
h

1
: 

T
h

e
 S

c
o

p
e

 o
f 

S
o

ft
w

a
re

 E
n

g
in

e
e

ri
n

g

9

Types of Software Maintenance

•Corrective maintenance (fixing bugs)

•Perfective maintenance (improved functionality)

•Adaptive maintenance (changing environment)

Question: Which type(s) of maintenance can be improved 

through better requirements, specification, design, 

implementation, testing?

Different reactions to 

finding a software bug



C
h

1
: 

T
h

e
 S

c
o

p
e

 o
f 

S
o

ft
w

a
re

 E
n

g
in

e
e

ri
n

g

10

Recent Studies on State of Sys Analysis & Design

 Standish Study (2000)                                            

reviewed 28,000 projects =>

 Standish Study (2006)                                            

reviewed 9,000 projects =>



C
h

1
: 

T
h

e
 S

c
o

p
e

 o
f 

S
o

ft
w

a
re

 E
n

g
in

e
e

ri
n

g

11

Recent Studies on State of Sys Analysis & Design

 Cutter Study (2002): 78% of projects have been 
involved in disputes ending in litigation.  Of those 
cases: 

 In 67%, the functionality of the information system 
as delivered did not meet up to the claims of the 
developers

 In 56%, the promised delivery date slipped several 
times

 In 45%, the defects were so severe that the system 
was unusable



C
h

1
: 

T
h

e
 S

c
o

p
e

 o
f 

S
o

ft
w

a
re

 E
n

g
in

e
e

ri
n

g

12

Where to focus efforts + reduce software costs?

 60-70% of Faults: Specification/Design Faults

 Kelly, Sherif, and Hops [1992]

 1.9 faults per page of specification

 0.9 faults per page of design

 0.3 faults per page of code

 Bhandari[1994]: Faults at end of design phase of new
version of product

 13% of faults from previous version of product

 16% of faults in new specifications

 71% of faults in new design



C
h

1
: 

T
h

e
 S

c
o

p
e

 o
f 

S
o

ft
w

a
re

 E
n

g
in

e
e

ri
n

g

13

*Cost to Detect and Correct a Fault



C
h

1
: 

T
h

e
 S

c
o

p
e

 o
f 

S
o

ft
w

a
re

 E
n

g
in

e
e

ri
n

g

14

*Cost to Detect and Correct a Fault

ICE: Using 1994 data, if it 

costs  $8300 to fix a fault 

after delivery, how much 

would it have cost to fix if 

the fault had been detected 

during implementation?



C
h

1
: 

T
h

e
 S

c
o

p
e

 o
f 

S
o

ft
w

a
re

 E
n

g
in

e
e

ri
n

g

16

*Aspects of Team Programming

 Hardware (relatively) inexpensive — lead to increased 
demand for SW too large for one person to write in 
available time.  

 Brooks paper [1975] on the Mythical Man-Month:

 Single Programmer => delivery in 1 year

 Team of 6 Programmers => delivery in ?

 Quality of work ?

 What’s the Difficulty with Teams?



C
h

1
: 

T
h

e
 S

c
o

p
e

 o
f 

S
o

ft
w

a
re

 E
n

g
in

e
e

ri
n

g

18

Programmer vs. Software Engineer

 Responsibilities: Recent Ad for a Software Engineer 
(NASA Goddard, Greenbelt, MD) not                                     
that Ken Jennings is looking:  

 Determine embedded system                                 
requirements, prepare specification. 

 Design and develop software using                                  
object-oriented methods. 

 Perform unit testing. Maintain documentation.                
Assist with integration and testing. 

 Assess risk and propose design changes. Perform 
regression testing.

 Required Skills:
C, C++, Java, Real Time embedded systems
Education: B.S. – CS/IT/SE

 Clearance: Secret, existing clearance preferred


