
C
h

2
: 

S
o

ft
w

a
re

 L
if

e
 C

y
c

le
s

1

Software Life-Cycle Models (Schach Chap2)

 We Examine a few (of many) Life-cycle Models:

 Code (Build) and Fix

 Waterfall

 Spiral 

 Agile

 Focus on how Phases of Software                                     

Development are Incorporated. 

 How models evolved. 

 How Customer needs are met.



C
h

2
: 

S
o

ft
w

a
re

 L
if

e
 C

y
c

le
s

2

Code (Build) and Fix Model

 No specifications

 No formal design 

process



C
h

2
: 

S
o

ft
w

a
re

 L
if

e
 C

y
c

le
s

3

Waterfall Model (circa 1970)

 A first cut at improving “code (build) and fix"

 Each phase of the lifecycle represented as a discrete entity

 Original: Finish a phase and never re-visit that phase

 Tweaked over time to include feedback loops between phases

 Intentionally Documentation-driven



C
h

2
: 

S
o

ft
w

a
re

 L
if

e
 C

y
c

le
s

4

Aside: Requirements Phase (Schach Chap 11)

“I know you believe you understood what you think I said, but 
I am not sure you realize that what you heard is not what I 
meant!” 

Misconception: Must determine what client wants

Reality: Must determine client’s needs

 Rapid prototyping

 Key functionality

 What client sees

 Scenarios of Use

 Goal: objectively validate-able requirements



C
h

2
: 

S
o

ft
w

a
re

 L
if

e
 C

y
c

le
s

5

Aside: Requirements Phase (Schach Chap 11)

 Goal: System's Requirements and the set of Acceptance Test 
Plan Test Cases that objectively validate them

 Normal test cases demonstrate that the software meets the 
indicated functional requirement. 

• Expected uses of the system

 Abnormal test cases give the result of the software entering 
an unusual state, such as when a user provides invalid input.

• Unexpected (but possible) uses of the system

 Not Useful: Ones that describe states that properly                                                        
running software cannot be placed in.

Not testable - Avoid such attempts

 Ex: Checkout registers:  
What’s wrong with the below Requirement?!?

 Checkout registers must be fast.



C
h

2
: 

S
o

ft
w

a
re

 L
if

e
 C

y
c

le
s

6

Spiral Model (circa 1980s -> manages risk)

 Evolutionary development, initially just define high priority 

requirements:

 Prototype, access risk                                                                          

get user feedback    

 Continue with lower                                                                           

priority items.

 Features: 

• Commitment                                                                  

partition/cancellation

• Risk Analysis

• Lots of prototypes

• User Feedback



C
h

2
: 

S
o

ft
w

a
re

 L
if

e
 C

y
c

le
s

7

Analysis of Spiral Model

 Strengths

 No distinction between development, maintenance

 Risk-driven (focus resources where needed)

 Weaknesses

 Intent: Only useful for large/in-house software (can be 

cancelled w/o breaking a contract if deemed too risky)

 Cost: RA is too costly to use for small projects

 Risk-driven (what if poor risk evaluation?)



C
h

2
: 

S
o

ft
w

a
re

 L
if

e
 C

y
c

le
s

8

Agile Model circa 2000s

 Development tasks broken down into small increments with 

minimal planning. Iterations are of very short duration that 

typically last from 1 to 4 weeks.

 Each development cycle:

• Requirements/Spec                

adjustments 

• Design/coding 

• unit testing,                                

and acceptance                           

testing. 

 Agile: Embraces changing 

customer requirements. 


