Software Life-Cycle Models (Schach Chap?2)

S

g O We Examine a few (of many) Life-cycle Models:

~ g Code (Build) and Fix

g 0 Waterfall

§ aspiral o

%’ a Agile m

Development @ @ Stakeholders

-ocus on how Phases of Software
Development are Incorporated.

How models evolved. e
How Customer needs are met.

0
©
O
>
O
o)
=
4
o)
S
S
=
i
)
)
N
c
O

Code (Build) and Fix Model

O No specifications

O No formal design
process

Implement the
first version

Modify until
client is satisfied

Postdelivery
maintenance

!

—> Development

Retirement

- =% Maintenance

Waterfall Model (circa 1970)

o Afirst cut at improving “code (build) and fix"
0 Each phase of the lifecycle represented as a discrete entity
a Original: Finish a phase and never re-visit that phase
o Tweaked over time to include feedback loops between phases
a Intentionally Documentation-driven

0
©
O
>
O
o)
=
4
o)
S
S
=
i
)
)
N
c
O

Analysis

~

-
Testing & -

Integration Operation &
Maintenance

Implementation

Aside: Requirements Phase (Schach Chap 11)

“I know you believe you understood what you think I said, but
| am not sure you realize that what you heard is not what |

meant!”
Misconception: Must determine what client wants
Reality: Must determine client’s needs

7p)
©
O
>
O
o)
=
_|
o)
S
S
=
i
)
0p)
N
L
@)

O Rapld prOtOtypl ng THANKS FOR MAKING THAT THAT WAS A MOCK-LP! g JUST GIVE [THE MOCK-UP

PRODUCT MOCKOUP LAST WE DONT MAKE THAT El ME A

H| Key funCtionality WEEK. THE CUSTOMER PRODUCT YET. IT (OULD || THOUSAND [COMPETITOR'S

LIKED IT 50 MUCH THAT TAKE THREE YEARS TO 2| MOCK-UPS. |PRODUCT WITH

| What CI ient sees HE ORDERED A THOUSAND! MAKE ONE. o | THE FIRST | DUCT TAPE OVER

i| ONE WAS | THE LOGO.

3| TERRIFIC!

Sams www.unitedmedia.com

7/%f6 © 1996 Un

O Scenarios of Use

O Goal: objectively validate-able requirements

Aside: Requirements Phase (Schach Chap 11)

O Goal: System's Requirements and the set of Acceptance Test
Plan Test Cases that objectively validate them

0 Normal test cases demonstrate that the software meets the
Indicated functional requirement.

 Expected uses of the system

0 Abnormal test cases give the result of the software entering
an unusual state, such as when a user provides invalid input.

« Unexpected (but possible) uses of the system

0 Not Useful: Ones that describe states that properly
running software cannot be placed in. 4n Where do T hit

Not testable - Avoid such attempts) 10 shut it up?

0
©
O
>
O
o)
=
4
o)
S
S
=
=
)
)
N
c
O

O EX: Checkout registers: .
What’s wrong with the below Requirement?!? 5

0 Checkout registers must be fast. <

Spiral Model (circa 1980s -> manages risk)

O Evolutionary development, initially just define high priority
requirements:
CUMULATIVE *-

0 Prototype, access risk Lo procngss) N
pETERMNE, — steps EVALUATE
g et user feed baC k ALTERNATIVES, DENTIEY, J

a Continue with lower
priority items.

RISK AMALY SIS

RISK AMALYSIS

7p)
©
O
>
O
o)
=
4
o)
S
S
=
=
)
)
N
L
@)

RISK ANALYSIS

kel /‘ RISK 0~
M%m. PROTOTYPE,
Q Features: ¥ L~ rvee

REVIEW

= =] EMuLaTiON
fg?ﬂ:,'&‘;_: concerTOFf ™ =~ o _ BENCHMARKS
- OPERATIONS sorTwaRE -
FLAMN —
o Commitment rars -
DETAILED

DESIGH

DEVELOP- | proUIREMENTS

VALIDATION

partition/cancellation
* Risk Analysis N
y Fm:ﬁaﬂ g N TonanD N
* Lots of prototypes N ey
» User Feedback -

INTEGRATION

DESIGN VALIDATION
AND VERIFICATION

TATION

DEVELOF, VERIFY
HEXT LEVEL PRODUCT

6

Analysis of Spiral Model

Q Strengths
0 No distinction between development, maintenance
0 Risk-driven (focus resources where needed)

WELL NEED A RISK 1: INDECISIVENESS || 1 powt

RISK 3: CLUELESSNES E]l THESE
ON THIS PROTECT ISk 3: CL L S THIRTY-STX.

BEFORE T CAM
APPROVE IT.

RISK H4: MICROMANAGE- |i[RISKS.
MENT . :

O Weaknesses

a Intent: Only useful for large/in-house software (can be
cancelled w/o breaking a contract If deemed too risky)

QO Cost: RA Is too costly to use for small projects

O Risk-driven (what if poor risk evaluation?)

0
©
O
>
O
o)
=
4
o)
S
S
=
i
)
)
N
c
O

5 Adams werw unitedmedia. com

Agile Model circa 2000s

O Development tasks broken down into small increments with
minimal planning. Iterations are of very short duration that
typically last from 1 to 4 weeks.

CONTINUOUS VISIBILITY

0 Each development cycle:

- Integrate Integrate
 Requirements/Spec & Test & Test
& Test

START

h2: Software Life Cycles

adjustments
» Design/coding

e unit testing, -
nitiate
and acceptance BNEE

Define

teStI n g . Requirements

a Agile: Embraces changing
customer requirements.

AGILE

DEVELOPMENT

