Object-Oriented Analysis (OOA) (Schach Ch 13)

o OOA: Semi-formal Specification Techniques:
a With OO, Data and Action Treated as Equal Partners
a A Class models all needed aspects of one physical entity

L
n
=
®
-
<
[®)
&)
+—
-
)
—
@)
-
&)
)
O
O

O Imitially, Many Different “Methods” Emerged (Booch,
OMT, Shlaer-Mellor, Coad-Yourdon) — all essentially
doing the same thing, but in different ways.

Q S0, just what Is a “Method” in this context?

T WON'T KNOW WHAT TRY TO GET THIS
I CAN ACCOMPLISH CONCEPT THROUGH YOUR
UNTIL YOU TELL ME THICK SKULL: THE

CAN YOU DESIGN
IT TO TELL YOU
WHAT THE SOFTWARE SOFTWARE CAN DO MY REQUIREMENTS?

CAN DO. WHATEVER I DESIGN
R\, IT TO DO
20

www.dilbert.com

Y

What are “Methods?”

O A “Method” defines a reproducible path for obtaining
reliable results. Methods vary in sophistication/formality.

- Cooks refer to recipes, Architects use
blueprints,

- Aircrew use checklists before takeoff, landing

- Musicians follow rules of composition.

L
n
=
®
-
<
[®)
&)
+—
-
)
—
@)
-
&)
D
@)
O

- _ Grady Booch
O Similarly, a soft. dev. Method describes modeling

software systems in a reliable and reproducible way.
Facilitates comm between the various parties involved.

0 In 1994, Booch, Rumbaugh and Jacobson combined their
Methods into UML (Unified Modeling Language):

0 UML Emerged as a defacto standard; uses a Common
Notation for representing OOA & OOD.

Different Types of Diagrams Defined by UML

O Use case diagrams represent Dizgram
functions of system from user's i
viewpoint
PFOVIde a Startlng pOInt Comp onent Caszs Sequence Autinity Obje ot
for analysis efforts

Deplownent Use case Statechart Collaborati on

L
n
=
®
c
<
[®)
&)
+—
-
)
—
@)
L
&)
D
@)
O

o Class diagrams represent the O Additional UML Diagrams (we won’t

static structure of the system in use these In this course):

: - o Deployment diagrams represent the
terms of classes and relationships deployment of components on

particular pieces of hardware

O Interaction diagrams (realization = OkIJIJegt dlagrféms a Slmellfled
of specific scenario of the use case); ~ Co!'aboration diagram w/o message

_ broadcasts
- Sequence diagrams: temporal rep 5 Activity diagrams represent the
of interactions between objects. behavior of an operation as a set of
. Communication diagrams spatial actions

o Component diagrams represent the
physical components of an application

0 Statechart diagrams: Represent class
behavior in terms of state 3

rep of interactions between objects

Relationships Between UML Diagrams

BPR workflow diagrams | The UML state diagrams Al lm;tt: diag:ram(sltu:w; State diagram imp-lrc::::nh::tion
" all o e values (states
:Yoc;kﬂfo " ld li.ltgrzcxir-ns by that the attribute of diagrams
ind of activity diagram Activity di bject can take as © Implementation diagrams
: y diagrams show all Activity diaaram an object ¢ mple g
used to define an entire the activities that occur as the ¥ 50 ®

messages (events) are

show design and
process. values of an object change. (?" O processed. State ? architectural decisions.
Activity diagrams are used to O diagrams are only

capture workflows or decision .

SR sea care. e e o
diagrams sequences. whose instances are — s |
very dynamic. »
Use cases define generic i I l
: processes the system

must be able to handle.
Descriptions define
, generic scenarios.

. Use case e
descriptions Requirements
! specification

The UML, sEnMc & trf'd"re dlagr.ams . / Class diagram Package diagrams show
The class diagram describes classes, their associations 3 ' the logical division of
with other classes (responsibilities), and inheritance .

I : classes into modules.
relationships. More complex class diagrams describe ? |
class attributes and operation names. 1
' Component diagram

L
99
=
®
-
<
[®)
&)
+—
-
)
—
@)
—
&)
D
@)
O

1 Use case diagram Class diagram
I HEREE.E..-- |

%Z;?D PT_scecs > E_E < : g] "%

D TP
== - : ﬁ Scenarios describe specific 2 . Component diagrams
Ideal object model step-by-step examples of Object diagrams | QOpject diagram ' show the actual software
1 system use. The nouns used are used to x 1 modules in the final
3{ in scenario descriptions explore spe?lﬁc lil system. These are often
I often define classes. - problems with the same as the package
specific classes.

! 1 diagrams.
S
Jacobson’s ideal object model \ * ‘
defines three types of classqs The UML interaction diagrams o

i loyment diagram
according to their overall Deploy g

Sequence diagram
function. 9 2

' Sequence diagrams show the | —>f—>J—> I Gj_@
CRC cards flow of messages (events) <] _
CRC cards provide users between objects. In effect they : Collaboration diagrams
and developers with an 1 provide a formal way to specify are a combination of » Deployment diagrams
informal way to identify " | SiscenanD. object and sequence show the actual
classes, attributes, and diagrams. They show platforms (nodes) and
messages by working - . the flow of events : network links used by
through scenarios. ' between objects. the application.

' 4

OOA Consists of Two Basic Steps:

1. Use-case modeling (Mostly Action-Oriented, behavior of
system from the user/external entity perspective)

- How Results are Computed by Product (w/o rt Sequencing)
- Uses Scenarios And Use Cases

2. Class Modeling (“Object Modeling”) (Purely Data Oriented)
- Determine Classes, Attributes
- Relationships Between Objects
- Deduce Classes From: Use Cases, Noun Extraction

L
n
=
®
-
<
[®)
&)
+—
-
)
—
@)
L
&)
D
@)
O

O Note: OOA is Iterative, above Steps Repeatedly Revisited

Use Cases (Step 1 of OOA)

O Use Cases Model Intended Behavior of System, without concern for
how the Behavior will be Implemented.

O A Use Case Carries out Tangible Work of Value from the Perspective
of an Actor. Examples:

L
n
=
®
c
<
[®)
&)
+—
-
)
—
@)
L
&)
D
@)
O

0 Calculate a Result, jﬁ’fﬁ;—*@
0 Generate a New Object, or /QR o8 oo
o Change the State of another Object A or

o UML Notation Allows Visualization of a Use Case Apart from its
Realization and in Context with other Use Cases.

O An Actor’s role 1s to trigger (communicate with) a use case.

Use Cases => Describe System behavior from user's standpoint.
Definition of System boundary/relationships with Environment.

The Role of Actors in Use Cases

O Actor: Represents a role played by a Person or Machine
that interacts with the System as part of the use-case

a Actor typically causes system to respond by providing
Input to the system, and

0 Observes or otherwise uses output from the system.
0 The name of the actor describes the role played by the user

L
99
=
®
-
<
[®)
&)
+—
-
)
—
@)
-
&)
D
@)
O

- Actors are determined by observing the System

direct users of the system %ﬂffO

=2 came X

- Same physical person may play S /9(
the role of several actors —T

Q Actor B
- Several people may act as the Use case ¥

same actor

EX: Use Case Diagram

1) FireSafetyDepartmes

: File Edit View Tools Window Help

B.& | aB.B.9>

: Project Print Cut Copy Paste Undo Redo

E=ArE)

B.EB .EB. 8 .. 0.

UML Business Database Reguirement Impact Diagrams

E:Iiag.. r@Model..rp‘Logia.l ‘ @ Reaular Inspection Use Case Diagram |

F &

Format Copier

H B . & 2. |

Modeling Doc Team Code

Diagram Navigator o B X = Analysis Model -> Regular Inspection Use Case Diagram -@—E
OE -8 - HikEOs]y

mFireSaFety'Departrnent - ! I

& UM, Disgrams X Tools s Inspection Management System (IMS)

E—J@Use Case Diagram (1) |= & Point Eraser

--{#3]Regular Inspection Uk
= B:.’; egular I"IS!JE on Us: I,j_ Swesper
[D Inspection Manag:
- £ Inspector € magnet]
—_—

X

L
99
=
®
-
<
[®)
&)
+—
-
)
—
@)
—
&
D
@)
O

Print a of
""" ~—(Inspector ->Rev A Gesture Pen Inspection Rm to Client Office Assistant
----- —(Inspector -> Sche Use s | Schedule
% Inspector Assistar @ se Lase nspector
----- ——(Inspector Assista @ Use Case
""" —(Inspector Assista | | | pssaciation
FTmmemm e B mmiom b
dleem | > £ Actor
@ [Bp. | @o. (B || O s P
P - ” &1z 1nelide Select Inspection
roperty == 2 D— cases for next waek
[Synchronize InspectionfReport to ... v] 2E* Extend
S iu Inspector Assistant
19 | % % ' ---3 Dependency ™
Mame Synchroniz... 4— Generalization - D Rll:;";::;: :’EE:T}
Parent Inspection ... - .
2 View |E Ik Collaboration Supervisor
Fill - {TZE] Moke
Line M Black [..]
Font Dialog [o ||| Anchor
Connection ... Follow diag... A} constraint
Transparency i}
Opaque &— Containment
Model Eleme... Follow Diag... .* R S
Show extens...
Rank <Unspecifi... [Package =
Abstract D 3l ianram Ouerview
Leaf | - v
[Message

-Source;:

http://www.visual-paradigm.com/product/vpuml/features/screenshots.jsp

Example: A Garage Owner

Q Spends most of his time acting as a mechanic, but may
sometimes act as a salesman. On weekends, he plays the role
of customer and services his own car

L
99
=
®
-
<
[®)
&)
+—
-
)
—
@)
-
&)
D
@)
O

ap
-Actors are recruited from users, customers, %::fﬁm
suppliers, and are the people and things customer () ,_Jf/%
outside a system that interact with the system. seniee gp:) Mechenic
Ao
Four Main Categories of Actors:

- Principal actors: People who use the main system functions.
- Secondary actors: People that perform admin or maintenance tasks.

- Integral hardware: The unavoidable hardware devices that are part of
the application domain and must be used.

- Other systems: The other systems with which system must interact. g

L
n
=
®
-
<
[®)
&)
+—
-
)
—
@)
L
&)
D
@)
O

Elevator Problem: OOA

Step | of OOA: Use-Case Modeling

O Use Case: Generic Description of Overall Functionality
0 Scenario: Instance of a Use Case
0 Consider Typical Scenarios of Activities of each Class
O Goal: Obtain Insight into Product Behavior

O Example: Consider an elevator control system that controls a
bank of elevators in a high-rise.

a What Actors and Use-Cases
are relevant to the system?

a As a starting point, think of
various scenarios of use.

10

Scenarios in Terms of UML

Q Scenario: an Instance of a Use Case, Explores "Behind the
Scenes behavior." Fertile ground for acceptance test cases.

a Normal scenario (intended uses of system):

 User Wants to use Elevator to go from Floor 3 to Floor 7,
Presses "Up" Button. Elevator is currently empty.

0 Exception (Abnormal) scenario (unintended, but possible):

« User "A" Wants to go from Floor 3 to Floor 1, but Presses
Up Button. Elevator Already Contains User "B" who
Entered at Floor 1 and is Going to Floor 9.

L
99
=
®
-
<
[®)
&)
+—
-
)
—
@)
L
&)
D
@)
O

Is the below Normal, an Exception (Abnormal), or
Not Useful as a Scenario?

Example: User presses for Floor 3, but is instead taken to
Floor 8 (with no other users of the system involved).

11

Normal Scenario Go from Floor 3 to Floor 7, Press "Up" Button

=

User presses Up floor button at floor 3 to request elevator. User
wishes to go to floor 7.

Up floor button is turned on.

Elevator arrives at floor 3, Up floor button is turned off.
Elevator doors open. User enters elevator.

User presses elevator button for floor 7.

Floor 7 elevator button is turned on.

Elevator doors close.

Elevator travels to floor 7.

Floor 7 elevator button is turned off. What’s next?

L
n
=
®
c
<
[®)
&)
+—
-
)
—
@)
L
&)
D
@)
O

© o N o g B~ W D

12

L
99
=
®
-
<
©
()
<+~
-
)
—
@)
L
&)
D
O
O

ICE: Exception (Abnormal) Scenario

Scenario: User "A" Wants to go from Floor 3 to Floor 1, but
Presses Up Button. Elevator Already Contains User "B" who
Entered at Floor 1 and is Going to Floor 9.

Why exception (abnormal)?

- Develop the Scenario step-wise.

13

The Role of Use-Cases and Scenarios

O The scope of use cases and scenarios goes far beyond
solely defining system requirements; allow:

Q navigation first towards the classes and objects that
collaborate to satisfy a requirement, then

0 towards the tests that verify the system performs its
duties correctly (i.e., validation).

O Use-Cases and Scenarios are used during various phases
of object-oriented software development:

L
n
=
®
-
<
[®)
&)
+—
-
)
—
@)
-
&)
D
@)
O

Specification/Analysis Design Integration
-Spell out what system - Show how each -Acceptance Testing.
IS supposed to do via specific part of a Demo that each
Uses-Cases and Scenario is met by Scenario is indeed

Scenarios. classes/methods. met by the system.
14

L
99
=
®
-
<
[®)
&)
+—
-
)
—
@)
L
&)
D
@)
O

Aside: Walkthroughs

Technique Used to Uncover Application's Desired Behavior

0 Pretend You Already Have a Working Application, Walk
Through the Various Uses of the System

a Walkthroughs Help To Uncover All Intended Uses of a
System

0 Question: When do you stop walking through scenarios?

15

Day 2 of OOA, but first...a review

Step | of OOA: Use-Case Modeling

O Use Case: Generic Description of Overall Functionality
a Scenario: Instance of a Use Case
0 Consider Typical Scenarios of Activities of each Class
O Goal: Obtain Insight into Product Behavior

L
n
=
®
-
<
[®)
&)
+—
-
)
—
@)
-
&)
D
@)
O

Example: Much-o Fantastic-o Kitchen Assistant

Capabilities: Critical: Keep these separate

Browse recipes stored in a database : _—

Add e to the datab from each other in your designs:
di a neV_/ r(_aCIpe c_) ¢ database < Any database,

Edit an existing r_ec!pe _ < the info stored in the DB,

Plan a meal consisting of several recipes «» and rest of the system.

Scale a recipe/meal for a number or people
Plan meals for a period of time (# days)
Generate grocery list, includes all items in period's menu

L
99
=
®
-
<
[®)
&)
+—
-
)
—
@)
L
&)
D
@)
O

O 000000

ICE: Develop uses-cases and scenarios for the MFKA

Scenario 1: Plan meals and generate a Scenario 2: Edit Chicken Soup Recipe
grocery list for a week.

Take good notes for the MFKA! (you might see this again) 17

L
99
=
®
-
<
[®)
&)
+—
-
)
—
@)
-
&)
D
@)
O

Step 11 of OOA: Class Modeling

Goal: Extract Classes &Attributes, represent Relationships
(including Inheritance) between Classes.

Q Various Approaches:
0 Deduce Classes from Use Cases and their Scenarios
Often many Scenarios
Danger of inferring too many Candidate Classes

2 Noun Extraction

'‘Always' Works
(1.e. Gives You Something to Start With)

18

Noun Extraction Approach to Class Modeling

O For Developers Without Domain Experience

O Consists of Three Stages from highly to less Abstract:
a Stage 1: Concise Definition
0 Stage 2: Informal Strategy
0 Stage 3: Formalize the Strategy

L
n
=
®
c
<
[®)
&)
+—
-
)
—
@)
L
&)
D
@)
O

Stage 1 of Noun Extraction: Concise Definition

O Define Product as Concisely as Possible (in Single
Sentence If possible!)

Ruttons 1n elevators and on floors are
used to control motion of n elevators
in building with m floors

19

Stage 2 of Noun Extraction: Informal Strategy

Q Incorporate Constraints into Stage 1
O Express Result (preferably) in a Single Paragraph

Elevators have call buttons and floor
buttons that control movement of n
elevators 1n building with m floors.
Buttons 1llumlinate when pressed by user
to request elevator to stop at specific
floor; 1llumination 1s canceled when
request has been satisfied. 1If
elevator has no requests, 1t remalns at
1ts current floor with 1ts doors
closed.

L
n
=
®
c
<
[®)
&)
+—
-
)
—
@)
L
&)
D
@)
O

20

Stage 3 of Noun Extraction: Formalize the Strategy

o ldentify Nouns in Informal Strategy for use as Candidate
Classes:

a First, what are the nouns from stage 2?

a Then, exclude those nouns that are outside problem
boundary, and identify abstract nouns (abstract nouns
may become attributes). The nouns that remain become
Candidate Classes for your design.

L
99
=
®
-
<
[®)
&)
+—
-
)
—
@)
-
&)
D
@)
O

21

Stage 3 of Noun Extraction: Formalize the Strategy

o ldentify Nouns in Informal Strategy for use as Candidate
Classes:

a First, what are the nouns from stage 2?

Elevators have call buttons and floor
buttons that control movement of n
elevators 1n building with m floors.
Buttons 1lluminate when pressed by user
to request elevator to stop at specific
floor; i1llumination 1s canceled when
request has been satisfied. If elevator
has no requests, 1t remains at 1its
current floor with 1ts doors closed.

L
n
=
®
c
<
[®)
&)
+—
-
)
—
@)
L
&)
D
@)
O

22

Stage 3 of Noun Extraction: Formalize the Strategy

o ldentify Nouns in Informal Strategy for use as Candidate
Classes:

a First, what are the nouns from stage 2?

Elevators have call buttons and floor
buttons that control movement of n
elevators 1n building with m floors.
Buttons i1lluminate when pressed by user
to request elevator to stop at specific
floor; illumination 1s canceled when
request has been satisfied. If elevator
has no requests, 1t remains at 1ts
current floor with 1ts doors closed.

L
n
=
®
c
<
[®)
&)
+—
-
)
—
@)
L
&)
D
@)
O

23

Stage 3 of Noun Extraction: Formalize the Strategy

o ldentify Nouns in Informal Strategy for use as Candidate
Classes:

a Then, exclude those nouns that are outside problem
boundary, and identify abstract nouns (abstract nouns
may become attributes). The nouns that remain become
Candidate Classes for your design.

All Nouns Abstract Nouns Candidate Classes

L
n
=
®
-
<
[®)
&)
+—
-
)
—
@)
-
&)
D
@)
O

elevator(s)
call button(s)
floor button(s)
movement
building
floor(s)

user
illumination
request

doors

24

Stage 3 of Noun Extraction: Formalize the Strategy

o ldentify Nouns in Informal Strategy for use as Candidate
Classes:

a Then, exclude those nouns that are outside problem
boundary, and identify abstract nouns (abstract nouns

L
n
=
®
-
<
[®)
&)
+—
-
)
—
@)
-
&)
D
@)
O

may become attributes). The nouns that remain become

Candidate Classes for your design.

All Nouns

Abstract Nouns

Candidate Classes

elevator(s)
call button(s)
floor button(s)
movement

building-
floor(s).

Hser-
illumination

Fequest
doors

movement

iIllumination

elevator
call button
floor button

25

L
n
=
®
c
<
[®)
&)
+—
-
)
—
@)
L
&)
D
@)
O

Aside: UML notation for Is-A, Has-A, Assoclation

O Inheritance (Is-A) represented by a large open triangle

HumanBeing

name

getName()
setName()

/N

Midshipman

alphaCode

getAlphaCode()

(base class)

inherits from(“isA ”)

(derived class)

26

UML Notation (cont'd)

O Aggregation (Has-A)

PersonalComputer

1

CPU Monitor Keyboard Printer

L
n
=
®
-
<
[®)
&)
+—
-
)
—
@)
-
&)
D
@)
O

O Association (anything not a Is-A or Has-A). Must label the edge with
description of the relationship. 7

r
7~

Radiologist Vid Artist
1 Consults with n

27

First Iteration of Elevator System Class Diagram

[NEXT TIME, JUST SAY
THIS IS A £]l You PLAN TO UPDATE
LIVING EfLIT. :
DOCUMENT. MINE'S

nited Feature

u

SAMME E-mail: SCOTTADAMS@AOL.COM

] ;f%“qj- © 1995

Button

illuminated : boolean

i

L
n
=
®
c
<
[®)
&)
+—
-
)
—
@)
L
&)
D
@)
O

FloorButton CallButton
m 2m -2
communicate communicate
with with
Elevator
1 n

doors open : boolean
movement : int

28

L
99
=
®
-
<
[®)
&)
+—
-
)
—
@)
-
&)
D
@)
O

Second lteration of Class Diagram

Button

illuminated : boolean

7

FloorButton

CallButton

m

communicate

with

Elevator

2m -2

communicate
with

doors open : boolean
movement : int

n

-

?

Button

illuminated : boolean

r

FloorButton

mn
communicate
with
1

CallButton
2m -2
communicate
with
ElevatorController |1

| 1
controls
| n
Elevator

doors open : boolean
movement : int

2nd Iteration: Add a Controller Class to determine which elevator

IS sent to a Floor Button Request.

Note: OOA is an intentionally iterative process.

29

Is All This Iteration Really Needed?

o All software development models include iteration.
0 Waterfall
a Spiral
a Agile
o Latter 2 Models Explicitly Reflect Iterative Approach
O Is iteration Intrinsic or Extrinsic to the Software
Development Problem?

o Without iteration, have to get everything exactly right the
first time!

ARE THESE USER
: SPECIFICATIONS
| COMPLETE?

L
99
=
®
-
<
©
()
<+~
-
)
—
@)
—
&)
D
O
O

| T ASK BECAUSE ANY
LATER CHANGES WILL
CAUSE ME TO MISS
THE DEADLINE.

WHAT TF I
ONLY NEED A TINY
| CHANGE LATER?

)

DilbertCartconist@gmail.com
© 2016 Soott Adams, Inc/Dist. by Universal Uctick

L
99
=
®
-
<
[®)
&)
+—
-
)
—
@)
—
&)
D
@)
O

Recap: Relationships Between UML Diagrams

BPR workflow diagrams

Workflow diagrams are a
kind of activity diagram
used to define an entire

process. \

¢ The I-JM!. us-e-case
diagrams

Use cases define generic
processes the system

The UML state diagrams

Activity diagrams show all
the activities that occur as the
values of an object change.
Activity diagrams are used to
capture workflows or decision
sequences.

Activity diagram

=

] =0

must be able to handle.
Descriptions define
, generic scenarios.

1

Use case e
descriptions
1 | Use case diagram

Requirements
! specification

The UML static structure diagrams
The class diagram describes classes, their associations
with other classes (responsibilities), and inheritance
relationships. More complex class diagrams describe
class attributes and operation names.

A state diagram shows
all of the values (states)
that the attribute of
an object can take as
messages (events) are
processed. State
diagrams are only
prepared for classes
whose instances are
very dynamic.

State diagram

The UML
implementation

diagrams
Implementation diagrams
show design and
architectural decisions.

-4

Class diagram

*

T I

Scenarios

-

lr :
Y
B S et
| S e ol

ideal object model 3 -I
% 1

= ﬁ Scenarios describe specific

Class diagram

& G

/
\

step-by-step examples of
system use. The nouns used
in scenario descriptions
often define classes.

Object diagrams | Opject diagram
are used to

explore specific i]

problems with

specific classes.

Jacobson’s ideal object moclel
defines three types of classqs
according to their overall
function.

CRC cards

CRC cards provide users
and developers with an 1
informal way to identify "
classes, attributes, and
messages by working
through scenarios.

Collaboration diagram

The UML interaction diagrams\ *

Sequence diagrams show the
flow of messages (events)

<<

Sequence diagram

—>

-

>

between objects. In effect they

provide a formal way to specify

N\
&~

Collaboration diagrams

a scenario.

are a combination of
object and sequence
diagrams. They show
the flow of events
between objects.

— |

el B

Package diagram
=1

£

=1

Package diagrams show
the logical division of
classes into modules.

Component diagram

518l

Component diagrams
show the actual software
modules in the final
system. These are often
the same as the package
diagrams.

Deployment diagram

Deployment diagrams
show the actual
platforms (nodes) and
network links used by
the application.

31

L
n
=
®
c
<
[®)
&)
+—
-
)
—
@)
L
&)
D
@)
O

DFDs: when OO doesn’t quite fit

O Data Flow Diagrams (DFDs) are used for modeling
non-object oriented systems. (Yourdon/DeMarco)

a Shows where data comes from,

0 where data goes,
a where data stored, and

0 what happens to data on the way.

O These four things are the
only things that can

O DFDs show the overall
picture of a system,
and some of the detail.

O

nappen to data in a DFD.

DETAIL RighT Herel =
a process: alters data

computes new data
file/database: stores data

data source/sink (1/0):
hardware device, user

data flow 32

DFD - Elevator Example (Level 1)

O A DFD modeling an elevator’s alarm

L
n
=
®
-
<
[®)
&)
+—
-
)
—
@)
L
&)
D
@)
O

Alarm Button
device driver

Fire Dispatcher
Interface

Respond
to alarm

Siren o
device driver | ° @&z’ Alarm Events
C)O

33

L
n
=
®
-
<
[®)
&)
+—
-
)
—
@)
L
&)
D
@)
O

Transitioning To The OOD Phase

@ Once Specification Contract is Approved (Signed), the
following is Delivered to the Design Team:

a Specification Document,

0 Use Case Scenarios,

0 UML Use-Case, Class Diagrams
0 DFDs (also any ERs, FSMs, etc)

O Object-Oriented Design
uses the above as the
beginning of high level
design.

34

