
O
b

je
c

t-
O

ri
e

n
te

d
 A

n
a

ly
s

is

1

Object-Oriented Analysis (OOA) (Schach Ch 13)

 OOA: Semi-formal Specification Techniques:

 With OO, Data and Action Treated as Equal Partners

 A Class models all needed aspects of one physical entity

 Initially, Many Different “Methods” Emerged (Booch,

OMT, Shlaer-Mellor, Coad-Yourdon) — all essentially

doing the same thing, but in different ways.

 So, just what is a “Method” in this context?

O
b

je
c

t-
O

ri
e

n
te

d
 A

n
a

ly
s

is

2

What are “Methods?”

 A “Method” defines a reproducible path for obtaining
reliable results. Methods vary in sophistication/formality.

 Similarly, a soft. dev. Method describes modeling
software systems in a reliable and reproducible way.
Facilitates comm between the various parties involved.

 In 1994, Booch, Rumbaugh and Jacobson combined their
Methods into UML (Unified Modeling Language):

 UML Emerged as a defacto standard; uses a Common
Notation for representing OOA & OOD.

• Cooks refer to recipes, Architects use

blueprints,

• Aircrew use checklists before takeoff, landing

• Musicians follow rules of composition.

O
b

je
c

t-
O

ri
e

n
te

d
 A

n
a

ly
s

is

3

Different Types of Diagrams Defined by UML

 Use case diagrams represent
functions of system from user's
viewpoint

 Class diagrams represent the
static structure of the system in
terms of classes and relationships

 Interaction diagrams (realization
of specific scenario of the use case):

 Additional UML Diagrams (we won’t
use these in this course):

 Deployment diagrams represent the
deployment of components on
particular pieces of hardware

 Object diagrams a simplified
collaboration diagram w/o message
broadcasts

 Activity diagrams represent the
behavior of an operation as a set of
actions

 Component diagrams represent the
physical components of an application

 Statechart diagrams: Represent class
behavior in terms of state

Provide a starting point

for analysis efforts

• Sequence diagrams: temporal rep

of interactions between objects.

• Communication diagrams spatial

rep of interactions between objects

O
b

je
c

t-
O

ri
e

n
te

d
 A

n
a

ly
s

is

4

Relationships Between UML Diagrams

O
b

je
c

t-
O

ri
e

n
te

d
 A

n
a

ly
s

is

5

OOA Consists of Two Basic Steps:

1. Use-case modeling (Mostly Action-Oriented, behavior of
system from the user/external entity perspective)

2. Class Modeling (“Object Modeling”) (Purely Data Oriented)

 Note: OOA is Iterative, above Steps Repeatedly Revisited

• How Results are Computed by Product (w/o rt Sequencing)

• Uses Scenarios And Use Cases

• Determine Classes, Attributes

• Relationships Between Objects

• Deduce Classes From: Use Cases, Noun Extraction

O
b

je
c

t-
O

ri
e

n
te

d
 A

n
a

ly
s

is

6

Use Cases (Step 1 of OOA)

 Use Cases Model Intended Behavior of System, without concern for

how the Behavior will be Implemented.

 A Use Case Carries out Tangible Work of Value from the Perspective

of an Actor. Examples:

 Calculate a Result,

 Generate a New Object, or

 Change the State of another Object

 UML Notation Allows Visualization of a Use Case Apart from its

Realization and in Context with other Use Cases.

 An Actor’s role is to trigger (communicate with) a use case.

Use Cases => Describe System behavior from user's standpoint.

Definition of System boundary/relationships with Environment.

O
b

je
c

t-
O

ri
e

n
te

d
 A

n
a

ly
s

is

7

The Role of Actors in Use Cases

• Actors are determined by observing the

direct users of the system

 Same physical person may play

the role of several actors

 Several people may act as the

same actor

 Actor: Represents a role played by a Person or Machine

that interacts with the System as part of the use-case

 Actor typically causes system to respond by providing

input to the system, and

 Observes or otherwise uses output from the system.

 The name of the actor describes the role played by the user

O
b

je
c

t-
O

ri
e

n
te

d
 A

n
a

ly
s

is Ex: Use Case Diagram

8•Source: http://www.visual-paradigm.com/product/vpuml/features/screenshots.jsp

http://www.visual-paradigm.com/product/vpuml/features/screenshots.jsp

O
b

je
c

t-
O

ri
e

n
te

d
 A

n
a

ly
s

is

9

Example: A Garage Owner

 Spends most of his time acting as a mechanic, but may

sometimes act as a salesman. On weekends, he plays the role

of customer and services his own car

•Actors are recruited from users, customers,

suppliers, and are the people and things

outside a system that interact with the system.

Four Main Categories of Actors:

• Principal actors: People who use the main system functions.

• Secondary actors: People that perform admin or maintenance tasks.

• Integral hardware: The unavoidable hardware devices that are part of

the application domain and must be used.

• Other systems: The other systems with which system must interact.

O
b

je
c

t-
O

ri
e

n
te

d
 A

n
a

ly
s

is

10

Elevator Problem: OOA

Step I of OOA: Use-Case Modeling
 Use Case: Generic Description of Overall Functionality

 Scenario: Instance of a Use Case

 Consider Typical Scenarios of Activities of each Class

 Goal: Obtain Insight into Product Behavior

 Example: Consider an elevator control system that controls a
bank of elevators in a high-rise.

 What Actors and Use-Cases

are relevant to the system?

 As a starting point, think of

various scenarios of use.

O
b

je
c

t-
O

ri
e

n
te

d
 A

n
a

ly
s

is

11

Scenarios in Terms of UML

 Scenario: an Instance of a Use Case, Explores "Behind the

Scenes behavior." Fertile ground for acceptance test cases.

 Normal scenario (intended uses of system):

• User Wants to use Elevator to go from Floor 3 to Floor 7,

Presses "Up" Button. Elevator is currently empty.

 Exception (Abnormal) scenario (unintended, but possible):

• User "A" Wants to go from Floor 3 to Floor 1, but Presses

Up Button. Elevator Already Contains User "B" who

Entered at Floor 1 and is Going to Floor 9.

Is the below Normal, an Exception (Abnormal), or

Not Useful as a Scenario?

Example: User presses for Floor 3, but is instead taken to

Floor 8 (with no other users of the system involved).

O
b

je
c

t-
O

ri
e

n
te

d
 A

n
a

ly
s

is

12

Normal Scenario Go from Floor 3 to Floor 7, Press "Up" Button

1. User presses Up floor button at floor 3 to request elevator. User

wishes to go to floor 7.

2. Up floor button is turned on.

3. Elevator arrives at floor 3, Up floor button is turned off.

4. Elevator doors open. User enters elevator.

5. User presses elevator button for floor 7.

6. Floor 7 elevator button is turned on.

7. Elevator doors close.

8. Elevator travels to floor 7.

9. Floor 7 elevator button is turned off. What’s next?

O
b

je
c

t-
O

ri
e

n
te

d
 A

n
a

ly
s

is

13

ICE: Exception (Abnormal) Scenario

Scenario: User "A" Wants to go from Floor 3 to Floor 1, but
Presses Up Button. Elevator Already Contains User "B" who
Entered at Floor 1 and is Going to Floor 9.
Why exception (abnormal)?

- Develop the Scenario step-wise.

O
b

je
c

t-
O

ri
e

n
te

d
 A

n
a

ly
s

is

14

The Role of Use-Cases and Scenarios

 The scope of use cases and scenarios goes far beyond

solely defining system requirements; allow:

 navigation first towards the classes and objects that

collaborate to satisfy a requirement, then

 towards the tests that verify the system performs its

duties correctly (i.e., validation).

 Use-Cases and Scenarios are used during various phases

of object-oriented software development:

Specification/Analysis IntegrationDesign

•Spell out what system

is supposed to do via

Uses-Cases and

Scenarios.

• Show how each

specific part of a

Scenario is met by

classes/methods.

•Acceptance Testing.

Demo that each

Scenario is indeed

met by the system.

O
b

je
c

t-
O

ri
e

n
te

d
 A

n
a

ly
s

is

15

Aside: Walkthroughs

Technique Used to Uncover Application's Desired Behavior

 Pretend You Already Have a Working Application, Walk
Through the Various Uses of the System

 Walkthroughs Help To Uncover All Intended Uses of a
System

 Question: When do you stop walking through scenarios?

O
b

je
c

t-
O

ri
e

n
te

d
 A

n
a

ly
s

is Day 2 of OOA, but first…a review

Step I of OOA: Use-Case Modeling
 Use Case: Generic Description of Overall Functionality

 Scenario: Instance of a Use Case

 Consider Typical Scenarios of Activities of each Class

 Goal: Obtain Insight into Product Behavior

O
b

je
c

t-
O

ri
e

n
te

d
 A

n
a

ly
s

is

17

Example: Much-o Fantastic-o Kitchen Assistant

Capabilities:
 Browse recipes stored in a database

 Add a new recipe to the database

 Edit an existing recipe

 Plan a meal consisting of several recipes

 Scale a recipe/meal for a number or people

 Plan meals for a period of time (# days)

 Generate grocery list, includes all items in period's menu

Critical: Keep these separate

from each other in your designs:

 Any database,

 the info stored in the DB,

 and rest of the system.

Scenario 1: Plan meals and generate a

grocery list for a week.

Scenario 2: Edit Chicken Soup Recipe

ICE: Develop uses-cases and scenarios for the MFKA

Take good notes for the MFKA! (you might see this again)

O
b

je
c

t-
O

ri
e

n
te

d
 A

n
a

ly
s

is

18

Step II of OOA: Class Modeling

Goal: Extract Classes &Attributes, represent Relationships

(including Inheritance) between Classes.

 Various Approaches:

 Deduce Classes from Use Cases and their Scenarios

• Often many Scenarios

• Danger of inferring too many Candidate Classes

 Noun Extraction

• 'Always' Works

(i.e. Gives You Something to Start With)

O
b

je
c

t-
O

ri
e

n
te

d
 A

n
a

ly
s

is

19

Noun Extraction Approach to Class Modeling

 For Developers Without Domain Experience

 Consists of Three Stages from highly to less Abstract:

 Stage 1: Concise Definition

 Stage 2: Informal Strategy

 Stage 3: Formalize the Strategy

Stage 1 of Noun Extraction: Concise Definition

 Define Product as Concisely as Possible (in Single

Sentence if possible!)

Buttons in elevators and on floors are

used to control motion of n elevators

in building with m floors

O
b

je
c

t-
O

ri
e

n
te

d
 A

n
a

ly
s

is

20

Stage 2 of Noun Extraction: Informal Strategy

 Incorporate Constraints into Stage 1

 Express Result (preferably) in a Single Paragraph

Elevators have call buttons and floor

buttons that control movement of n

elevators in building with m floors.

Buttons illuminate when pressed by user

to request elevator to stop at specific

floor; illumination is canceled when

request has been satisfied. If

elevator has no requests, it remains at

its current floor with its doors

closed.

O
b

je
c

t-
O

ri
e

n
te

d
 A

n
a

ly
s

is

21

Stage 3 of Noun Extraction: Formalize the Strategy

 Identify Nouns in Informal Strategy for use as Candidate

Classes:

 First, what are the nouns from stage 2?

 Then, exclude those nouns that are outside problem

boundary, and identify abstract nouns (abstract nouns

may become attributes). The nouns that remain become

Candidate Classes for your design.

O
b

je
c

t-
O

ri
e

n
te

d
 A

n
a

ly
s

is

22

Stage 3 of Noun Extraction: Formalize the Strategy

 Identify Nouns in Informal Strategy for use as Candidate

Classes:

 First, what are the nouns from stage 2?

Elevators have call buttons and floor

buttons that control movement of n

elevators in building with m floors.

Buttons illuminate when pressed by user

to request elevator to stop at specific

floor; illumination is canceled when

request has been satisfied. If elevator

has no requests, it remains at its

current floor with its doors closed.

O
b

je
c

t-
O

ri
e

n
te

d
 A

n
a

ly
s

is

23

Stage 3 of Noun Extraction: Formalize the Strategy

 Identify Nouns in Informal Strategy for use as Candidate

Classes:

 First, what are the nouns from stage 2?

Elevators have call buttons and floor

buttons that control movement of n

elevators in building with m floors.

Buttons illuminate when pressed by user

to request elevator to stop at specific

floor; illumination is canceled when

request has been satisfied. If elevator

has no requests, it remains at its

current floor with its doors closed.

O
b

je
c

t-
O

ri
e

n
te

d
 A

n
a

ly
s

is

 Identify Nouns in Informal Strategy for use as Candidate

Classes:

 Then, exclude those nouns that are outside problem

boundary, and identify abstract nouns (abstract nouns

may become attributes). The nouns that remain become

Candidate Classes for your design.

24

Stage 3 of Noun Extraction: Formalize the Strategy

All Nouns Abstract Nouns Candidate Classes

elevator(s)

call button(s)

floor button(s)

movement

building

floor(s)

user

illumination

request

doors

O
b

je
c

t-
O

ri
e

n
te

d
 A

n
a

ly
s

is

 Identify Nouns in Informal Strategy for use as Candidate

Classes:

 Then, exclude those nouns that are outside problem

boundary, and identify abstract nouns (abstract nouns

may become attributes). The nouns that remain become

Candidate Classes for your design.

25

Stage 3 of Noun Extraction: Formalize the Strategy

All Nouns Abstract Nouns Candidate Classes

elevator(s)

call button(s)

floor button(s)

movement

building

floor(s)

user

illumination

request

doors

movement

illumination

elevator

call button

floor button

O
b

je
c

t-
O

ri
e

n
te

d
 A

n
a

ly
s

is

26

Aside: UML notation for Is-A, Has-A, Association

 Inheritance (Is-A) represented by a large open triangle

(base class)

(derived class)

inherits from (“ isA ”)

HumanBeing

Midshipman

name

getName()

alphaCode

getAlphaCode()

setName()

O
b

je
c

t-
O

ri
e

n
te

d
 A

n
a

ly
s

is

27

UML Notation (cont'd)

 Aggregation (Has-A)

 Association (anything not a Is-A or Has-A). Must label the edge with

description of the relationship.

1

Radiologist Artist

Consults with n

PersonalComputer

MonitorCPU Keyboard Printer

O
b

je
c

t-
O

ri
e

n
te

d
 A

n
a

ly
s

is

28

First Iteration of Elevator System Class Diagram

n 1

m 2m – 2

FloorButton CallButton

Elevator

doors open : boolean
movement : int

Button

illuminated : boolean

communicate
with

communicate
with

O
b

je
c

t-
O

ri
e

n
te

d
 A

n
a

ly
s

is

mn 2m – 2

communicate
with

s

FloorButton CallButton

Button

illuminated : boolean

ElevatorController

n

1

Elevator

1 1

controls

doors open : boolean
movement : int

communicate
with

s

29

Second Iteration of Class Diagram

2nd Iteration: Add a Controller Class to determine which elevator

is sent to a Floor Button Request.

Note: OOA is an intentionally iterative process.

?

n 1

m 2m – 2

FloorButton CallButton

Elevator

doors open : boolean
movement : int

Button

illuminated : boolean

communicate
with

communicate
with

O
b

je
c

t-
O

ri
e

n
te

d
 A

n
a

ly
s

is

30

Is All This Iteration Really Needed?

 All software development models include iteration.

 Waterfall

 Spiral

 Agile

• Latter 2 Models Explicitly Reflect Iterative Approach

 Is iteration Intrinsic or Extrinsic to the Software

Development Problem?

 Without iteration, have to get everything exactly right the

first time!

O
b

je
c

t-
O

ri
e

n
te

d
 A

n
a

ly
s

is

31

Recap: Relationships Between UML Diagrams

O
b

je
c

t-
O

ri
e

n
te

d
 A

n
a

ly
s

is DFDs: when OO doesn’t quite fit

 Data Flow Diagrams (DFDs) are used for modeling

non-object oriented systems. (Yourdon/DeMarco)

 Shows where data comes from,

 where data goes,

 where data stored, and

 what happens to data on the way.

 These four things are the

only things that can

happen to data in a DFD.

 DFDs show the overall

picture of a system,

and some of the detail.
32

a process: alters data,

computes new data

file/database: stores data

data source/sink (I/O):

hardware device, user

data flow

O
b

je
c

t-
O

ri
e

n
te

d
 A

n
a

ly
s

is DFD - Elevator Example (Level 1)

 A DFD modeling an elevator’s alarm

33

Respond

to alarm

Alarm Button

device driver

Siren

device driver

event data

Fire Dispatcher

interface

Alarm Events

Alert

Firefighters

dispatch data

O
b

je
c

t-
O

ri
e

n
te

d
 A

n
a

ly
s

is

34

Transitioning To The OOD Phase

 Once Specification Contract is Approved (Signed), the

following is Delivered to the Design Team:

 Specification Document,

 Use Case Scenarios,

 UML Use-Case, Class Diagrams

 DFDs (also any ERs, FSMs, etc)

 Object-Oriented Design

uses the above as the

beginning of high level

design.

